[转帖]TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

tcp,连接,队列,发生,什么,如何,应对 · 浏览次数 : 0

小编点评

# TCP 半连接队列和全连接队列满了会发生什么?又该如何应对? **1. 理解条件 3** 条件 3 是当当前半连接队列长度超过理论半连接队列最大值 256 时,才会丢弃 SYN 包。 **2. 分析服务端处于 SYN_REVC 状态的最大个数** 服务端处于 SYN_REVC 状态的最大个数分为以下两种情况: 1. 如果当前半连接队列长度小于 192,则处于 SYN_REVC 状态的最大个数就是理论半连接队列最大值 256 - (192 >> 2)。 2. 如果当前半连接队列长度超过 192,则处于 SYN_REVC 状态的最大个数是理论半连接队列最大值 256。 **3. 开启 syncookies 功能** 开启 syncookies 功能可以成功建立连接,即使当前半连接队列已满。 **4. 减少 SYN+ACK 重传次数** 减少 SYN+ACK 重传次数可以加快处于 SYN_REVC 状态的 TCP 连接断开。

正文

https://www.jianshu.com/p/072ed535b1dc

 

原文地址:TCP 半连接队列和全连接队列满了会发生什么?

一个端口上面的tcp连接创建,基本都只用一个线程处理。如果大并发连接请求过来,处理不了,那么会放入“待处理队列”。为什么不用多线程呢?因为创建连接基本都是内存操作,速度很快。

原文地址:Netty系列文章之Netty线程模型

当然如果你想对某个端口开启多个线程监听,那么可以实现多个Reactor模型。单个Reactor包含:一个selector监听器,多个事件处理器Acceptor,Reader,Writer等。

主从多线程模型 (最流行)

 
image.png
  • 存在多个Reactor,每个Reactor都有自己的selector选择器,线程和dispatch
  • 主线程中的mainReactor通过自己的selector只监控连接建立事件,收到事件后通过Accpetor接收,将新的连接分配给某个subReactor,同时该连接注册到该subReactor的selector上,达到多个subReactor平均分配sockect的目的。
  • 子线程中的subReactor将mainReactor分配的连接加入连接队列中通过自己的selector进行监听,并创建一个Handler用于处理后续事件:
    Handler完成read->业务处理->send的完整业务流程


     
    image.png

举个例子:有1万个连接通过mainReactor被accpect后创建各自的socket连接,相应的sockect被分别注册到4个subReactor的selector。那么每个selector只需要监听2500个sockect就可以了,提高了监听效率。我感觉倒不是提高了监听效率,因为用了epoll是内核通知用户线程数据准备好了。一次监听2500和一次监听10000监听效率感觉差不多,真正影响效率的是响应活跃连接的速度。比如:如果1w个连接同时大概有100个活跃连接,那么一次监听到100个活跃连接,最后一个连接的响应是最慢的,需要前面99个处理完,才能响应它。但是如果是均分到4个selector,那么每个selector平均有25个活跃连接,最后一个连接的响应只要等前24个处理完就可以响应了。

参考原文:谈谈Netty的线程模型

 
image.png

每一个Loop都是一个完整体,包含:Queue,Thread,Selector。

  1. 创建的socket通过轮训方式的负载均衡分配到不同的NioEventLoop
  2. NioEventLoop在处理读写事件时,为了避免某一个连接处理时间太长导致其他连接无法响应。有避免饥饿的处理机制。在NioEventLoop.run方法里面可以看得到,根据ioRatio来调整的,ioRatio默认是50

前言

网上许多博客针对增大 TCP 半连接队列和全连接队列的方式如下:

  • 增大 TCP 半连接队列方式是增大 tcp_max_syn_backlog;
  • 增大 TCP 全连接队列方式是增大 listen() 函数中的 backlog;

这里先跟大家说下,上面的方式都是不准确的。

“你怎么知道不准确?”

很简单呀,因为我做了实验和看了 TCP 协议栈的内核源码,发现要增大这两个队列长度,不是简简单单增大某一个参数就可以的。

接下来,就会以实战 + 源码分析,带大家解密 TCP 半连接队列和全连接队列。

“源码分析,那不是劝退吗?我们搞 Java 的看不懂呀”

放心,本文的源码分析不会涉及很深的知识,因为都被我删减了,你只需要会条件判断语句 if、左移右移操作符、加减法等基本语法,就可以看懂。

另外,不仅有源码分析,还会介绍 Linux 排查半连接队列和全连接队列的命令。

“哦?似乎很有看头,那我姑且看一下吧!”

行,没有被劝退的小伙伴,值得鼓励,下面这图是本文的提纲:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

本文提纲


正文

什么是 TCP 半连接队列和全连接队列?

在 TCP 三次握手的时候,Linux 内核会维护两个队列,分别是:

  • 半连接队列,也称 SYN 队列;
  • 全连接队列,也称 accepet 队列;

服务端收到客户端发起的 SYN 请求后,内核会把该连接存储到半连接队列,并向客户端响应 SYN+ACK,接着客户端会返回 ACK,服务端收到第三次握手的 ACK 后,内核会把连接从半连接队列移除,然后创建新的完全的连接,并将其添加到 accept 队列,等待进程调用 accept 函数****时****把连接取出来。

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

半连接队列与全连接队列

不管是半连接队列还是全连接队列,都有最大长度限制,超过限制时,内核会直接丢弃,或返回 RST 包。


实战 - TCP 全连接队列溢出

如何知道应用程序的 TCP 全连接队列大小?

在服务端可以使用 ss 命令,来查看 TCP 全连接队列的情况:

但需要注意的是 ss 命令获取的 Recv-Q/Send-Q 在「LISTEN 状态」和「非 LISTEN 状态」所表达的含义是不同的。从下面的内核代码可以看出区别:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

在「LISTEN 状态」时,Recv-Q/Send-Q 表示的含义如下:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?
  • Recv-Q:当前全连接队列的大小,也就是当前已完成三次握手并等待服务端accept() 的 TCP 连接个数;
  • Send-Q:当前全连接最大队列长度,上面的输出结果说明监听 8088 端口的 TCP 服务进程,最大全连接长度为 128;

在「非 LISTEN 状态」时,Recv-Q/Send-Q 表示的含义如下:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?
  • Recv-Q:已收到但未被应用进程读取的字节数;
  • Send-Q:已发送但未收到确认的字节数;

如何模拟 TCP 全连接队列溢出的场景?

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

测试环境

实验环境:

  • 客户端和服务端都是 CentOs 6.5 ,Linux 内核版本 2.6.32
  • 服务端 IP 192.168.3.200,客户端 IP 192.168.3.100
  • 服务端是 Nginx 服务,端口为 8088

这里先介绍下 wrk 工具,它是一款简单的 HTTP 压测工具,它能够在单机多核 CPU 的条件下,使用系统自带的高性能 I/O 机制,通过多线程和事件模式,对目标机器产生大量的负载。

本次模拟实验就使用 wrk 工具来压力测试服务端,发起大量的请求,一起看看服务端 TCP 全连接队列满了会发生什么?有什么观察指标?

客户端执行 wrk 命令对服务端发起压力测试,并发 3 万个连接:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

在服务端可以使用 ss 命令,来查看当前 TCP 全连接队列的情况:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

其间共执行了两次 ss 命令,从上面的输出结果,可以发现当前 TCP 全连接队列上升到了 129 大小,超过了最大 TCP 全连接队列。

当超过了 TCP 最大全连接队列,服务端则会丢掉后续进来的 TCP 连接,丢掉的 TCP 连接的个数会被统计起来,我们可以使用 netstat -s 命令来查看:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

上面看到的 41150 times ,表示全连接队列溢出的次数,注意这个是累计值。可以隔几秒钟执行下,如果这个数字一直在增加的话肯定全连接队列偶尔满了。

从上面的模拟结果,可以得知,当服务端并发处理大量请求时,如果 TCP 全连接队列过小,就容易溢出。发生 TCP 全连接队溢出的时候,后续的请求就会被丢弃,这样就会出现服务端请求数量上不去的现象。

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

全连接队列溢出

全连接队列满了,就只会丢弃连接吗?

实际上,丢弃连接只是 Linux 的默认行为,我们还可以选择向客户端发送 RST 复位报文,告诉客户端连接已经建立失败。

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

tcp_abort_on_overflow 共有两个值分别是 0 和 1,其分别表示:

  • 0 :表示如果全连接队列满了,那么 server 扔掉 client 发过来的 ack ;
  • 1 :表示如果全连接队列满了,那么 server 发送一个 reset 包给 client,表示废掉这个握手过程和这个连接;

如果要想知道客户端连接不上服务端,是不是服务端 TCP 全连接队列满的原因,那么可以把 tcp_abort_on_overflow 设置为 1,这时如果在客户端异常中可以看到很多connection reset by peer 的错误,那么就可以证明是由于服务端 TCP 全连接队列溢出的问题。

通常情况下,应当把 tcp_abort_on_overflow 设置为 0,因为这样更有利于应对突发流量。

举个例子,当 TCP 全连接队列满导致服务器丢掉了 ACK,与此同时,客户端的连接状态却是 ESTABLISHED,进程就在建立好的连接上发送请求。只要服务器没有为请求回复 ACK,请求就会被多次重发。如果服务器上的进程只是短暂的繁忙造成 accept 队列满,那么当 TCP 全连接队列有空位时,再次接收到的请求报文由于含有 ACK,仍然会触发服务器端成功建立连接。

所以,tcp_abort_on_overflow 设为 0 可以提高连接建立的成功率,只有你非常肯定 TCP 全连接队列会长期溢出时,才能设置为 1 以尽快通知客户端。

如何增大 TCP 全连接队列呢?

是的,当发现 TCP 全连接队列发生溢出的时候,我们就需要增大该队列的大小,以便可以应对客户端大量的请求。

TCP 全连接队列足最大值取决于 somaxconn 和 backlog 之间的最小值,也就是 min(somaxconn, backlog)。从下面的 Linux 内核代码可以得知:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?
  • somaxconn 是 Linux 内核的参数,默认值是 128,可以通过/proc/sys/net/core/somaxconn 来设置其值;
  • backlog 是 listen(int sockfd, int backlog) 函数中的 backlog 大小,Nginx 默认值是 511,可以通过修改配置文件设置其长度;

前面模拟测试中,我的测试环境:

  • somaxconn 是默认值 128;
  • Nginx 的 backlog 是默认值 511

所以测试环境的 TCP 全连接队列最大值为 min(128, 511),也就是 128,可以执行ss 命令查看:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

现在我们重新压测,把 TCP 全连接队列搞大,把 somaxconn 设置成 5000:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

接着把 Nginx 的 backlog 也同样设置成 5000:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

最后要重启 Nginx 服务,因为只有重新调用 listen() 函数, TCP 全连接队列才会重新初始化。

重启完后 Nginx 服务后,服务端执行 ss 命令,查看 TCP 全连接队列大小:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

从执行结果,可以发现 TCP 全连接最大值为 5000。

增大 TCP 全连接队列后,继续压测

客户端同样以 3 万个连接并发发送请求给服务端:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

服务端执行 ss 命令,查看 TCP 全连接队列使用情况:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

从上面的执行结果,可以发现全连接队列使用增长的很快,但是一直都没有超过最大值,所以就不会溢出,那么 netstat -s 就不会有 TCP 全连接队列溢出个数的显示:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

说明 TCP 全连接队列最大值从 128 增大到 5000 后,服务端抗住了 3 万连接并发请求,也没有发生全连接队列溢出的现象了。

如果持续不断地有连接因为 TCP 全连接队列溢出被丢弃,就应该调大 backlog 以及 somaxconn 参数。


实战 - TCP 半连接队列溢出

如何查看 TCP 半连接队列长度?

很遗憾,TCP 半连接队列长度的长度,没有像全连接队列那样可以用 ss 命令查看。

但是我们可以抓住 TCP 半连接的特点,就是服务端处于 SYN_RECV 状态的 TCP 连接,就是在 TCP 半连接队列。

于是,我们可以使用如下命令计算当前 TCP 半连接队列长度:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

如何模拟 TCP 半连接队列溢出场景?

模拟 TCP 半连接溢出场景不难,实际上就是对服务端一直发送 TCP SYN 包,但是不回第三次握手 ACK,这样就会使得服务端有大量的处于 SYN_RECV 状态的 TCP 连接。

这其实也就是所谓的 SYN 洪泛、SYN 攻击、DDos 攻击。

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

测试环境

实验环境:

  • 客户端和服务端都是 CentOs 6.5 ,Linux 内核版本 2.6.32
  • 服务端 IP 192.168.3.200,客户端 IP 192.168.3.100
  • 服务端是 Nginx 服务,端口为 8088

注意:本次模拟实验是没有开启 tcp_syncookies,关于 tcp_syncookies 的作用,后续会说明。

本次实验使用 hping3 工具模拟 SYN 攻击:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

当服务端受到 SYN 攻击后,连接服务端 ssh 就会断开了,无法再连上。只能在服务端主机上执行查看当前 TCP 半连接队列大小:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

同时,还可以通过 netstat -s 观察半连接队列溢出的情况:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

上面输出的数值是累计值,表示共有多少个 TCP 连接因为半连接队列溢出而被丢弃。隔几秒执行几次,如果有上升的趋势,说明当前存在半连接队列溢出的现象。

大部分人都说 tcp_max_syn_backlog 是指定半连接队列的大小,是真的吗?

很遗憾,半连接队列的大小并不单单只跟 tcp_max_syn_backlog 有关系。

上面模拟 SYN 攻击场景时,服务端的 tcp_max_syn_backlog 的默认值如下:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

但是在测试的时候发现,服务端最多只有 256 个半连接队列,而不是 512,所以半连接队列的最大长度不一定由 tcp_max_syn_backlog 值决定的。

接下来,走进 Linux 内核的源码,来分析 TCP 半连接队列的最大值是如何决定的。

TCP 第一次握手(收到 SYN 包)的 Linux 内核代码如下,其中缩减了大量的代码,只需要重点关注 TCP 半连接队列溢出的处理逻辑:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

从源码中,我可以得出共有三个条件因队列长度的关系而被丢弃的:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?
  1. 如果半连接队列满了,并且没有开启 tcp_syncookies,则会丢弃;
  2. 若全连接队列满了,且没有重传 SYN+ACK 包的连接请求多于 1 个,则会丢弃;
  3. 如果没有开启 tcp_syncookies,并且 max_syn_backlog 减去 当前半连接队列长度小于 (max_syn_backlog >> 2),则会丢弃;

关于 tcp_syncookies 的设置,后面在详细说明,可以先给大家说一下,开启 tcp_syncookies 是缓解 SYN 攻击其中一个手段。

接下来,我们继续跟一下检测半连接队列是否满的函数
inet_csk_reqsk_queue_is_full 和 检测全连接队列是否满的函数 sk_acceptq_is_full :

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

从上面源码,可以得知:

  • 全连接队列的最大值是 sk_max_ack_backlog 变量,sk_max_ack_backlog 实际上是在 listen() 源码里指定的,也就是 min(somaxconn, backlog);
  • 半连接队列的最大值是 max_qlen_log 变量,max_qlen_log 是在哪指定的呢?现在暂时还不知道,我们继续跟进;

我们继续跟进代码,看一下是哪里初始化了半连接队列的最大值 max_qlen_log:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

从上面的代码中,我们可以算出 max_qlen_log 是 8,于是代入到 检测半连接队列是否满的函数 reqsk_queue_is_full :

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

也就是 qlen >> 8 什么时候为 1 就代表半连接队列满了。这计算这不难,很明显是当 qlen 为 256 时,256 >> 8 = 1。

至此,总算知道为什么上面模拟测试 SYN 攻击的时候,服务端处于 SYN_RECV 连接最大只有 256 个。

可见,半连接队列最大值不是单单由 max_syn_backlog 决定,还跟 somaxconn 和 backlog 有关系。

在 Linux 2.6.32 内核版本,它们之间的关系,总体可以概况为:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

1. 当 max_syn_backlog > min(somaxconn, backlog) 时, 半连接队列最大值 max_qlen_log = min(somaxconn, backlog) * 2;

2. 当 max_syn_backlog < min(somaxconn, backlog) 时, 半连接队列最大值 max_qlen_log = max_syn_backlog * 2;

半连接队列最大值 max_qlen_log 就表示服务端处于 SYN_REVC 状态的最大个数吗?

依然很遗憾,并不是。

max_qlen_log 是理论半连接队列最大值,并不一定代表服务端处于 SYN_REVC 状态的最大个数。

在前面我们在分析 TCP 第一次握手(收到 SYN 包)时会被丢弃的三种条件:

  1. 如果半连接队列满了,并且没有开启 tcp_syncookies,则会丢弃;
  2. 若全连接队列满了,且没有重传 SYN+ACK 包的连接请求多于 1 个,则会丢弃;
  3. 如果没有开启 tcp_syncookies,并且 max_syn_backlog 减去 当前半连接队列长度小于 (max_syn_backlog >> 2),则会丢弃;

假设条件 1 当前半连接队列的长度 「没有超过」理论的半连接队列最大值 max_qlen_log,那么如果条件 3 成立,则依然会丢弃 SYN 包,也就会使得服务端处于 SYN_REVC 状态的最大个数不会是理论值 max_qlen_log。

似乎很难理解,我们继续接着做实验,实验见真知。

服务端环境如下:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

配置完后,服务端要重启 Nginx,因为全连接队列最大和半连接队列最大值是在 listen() 函数初始化。

根据前面的源码分析,我们可以计算出半连接队列 max_qlen_log 的最大值为 256:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

客户端执行 hping3 发起 SYN 攻击:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

服务端执行如下命令,查看处于 SYN_RECV 状态的最大个数:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

可以发现,服务端处于 SYN_RECV 状态的最大个数并不是 max_qlen_log 变量的值。

这就是前面所说的原因:如果当前半连接队列的长度 「没有超过」理论半连接队列最大值 max_qlen_log,那么如果条件 3 成立,则依然会丢弃 SYN 包,也就会使得服务端处于 SYN_REVC 状态的最大个数不会是理论值 max_qlen_log。

我们来分析一波条件 3 :

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

从上面的分析,可以得知如果触发「当前半连接队列长度 > 192」条件,TCP 第一次握手的 SYN 包是会被丢弃的。

在前面我们测试的结果,服务端处于 SYN_RECV 状态的最大个数是 193,正好是触发了条件 3,所以处于 SYN_RECV 状态的个数还没到「理论半连接队列最大值 256」,就已经把 SYN 包丢弃了。

所以,服务端处于 SYN_RECV 状态的最大个数分为如下两种情况:

1. 如果「当前半连接队列」没超过「理论半连接队列最大值」,但是超过 max_syn_backlog - (max_syn_backlog >> 2),那么处于 SYN_RECV 状态的最大个数就是 max_syn_backlog - (max_syn_backlog >> 2);

2. 如果「当前半连接队列」超过「理论半连接队列最大值」,那么处于 SYN_RECV 状态的最大个数就是「理论半连接队列最大值」;

每个 Linux 内核版本「理论」半连接最大值计算方式会不同。

在上面我们是针对 Linux 2.6.32 版本分析的「理论」半连接最大值的算法,可能每个版本有些不同。

比如在 Linux 5.0.0 的时候,「理论」半连接最大值就是全连接队列最大值,但依然还是有队列溢出的三个条件:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

如果 SYN 半连接队列已满,只能丢弃连接吗?

并不是这样,开启 syncookies 功能就可以在不使用 SYN 半连接队列的情况下成功建立连接,在前面我们源码分析也可以看到这点,当开启了 syncookies 功能就不会丢弃连接。

syncookies 是这么做的:服务器根据当前状态计算出一个值,放在己方发出的 SYN+ACK 报文中发出,当客户端返回 ACK 报文时,取出该值验证,如果合法,就认为连接建立成功,如下图所示。

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

开启 syncookies 功能

syncookies 参数主要有以下三个值:

  • 0 值,表示关闭该功能;
  • 1 值,表示仅当 SYN 半连接队列放不下时,再启用它;
  • 2 值,表示无条件开启功能;

那么在应对 SYN 攻击时,只需要设置为 1 即可:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

如何防御 SYN 攻击?

这里给出几种防御 SYN 攻击的方法:

  • 增大半连接队列;
  • 开启 tcp_syncookies 功能
  • 减少 SYN+ACK 重传次数

方式一:增大半连接队列

在前面源码和实验中,得知要想增大半连接队列,我们得知不能只单纯增大 tcp_max_syn_backlog 的值,还需一同增大 somaxconn 和 backlog,也就是增大全连接队列。否则,只单纯增大 tcp_max_syn_backlog 是无效的。

增大 tcp_max_syn_backlog 和 somaxconn 的方法是修改 Linux 内核参数:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

增大 backlog 的方式,每个 Web 服务都不同,比如 Nginx 增大 backlog 的方法如下:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

最后,改变了如上这些参数后,要重启 Nginx 服务,因为半连接队列和全连接队列都是在 listen() 初始化的。

方式二:开启 tcp_syncookies 功能

开启 tcp_syncookies 功能的方式也很简单,修改 Linux 内核参数:

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

方式三:减少 SYN+ACK 重传次数

当服务端受到 SYN 攻击时,就会有大量处于 SYN_REVC 状态的 TCP 连接,处于这个状态的 TCP 会重传 SYN+ACK ,当重传超过次数达到上限后,就会断开连接。

那么针对 SYN 攻击的场景,我们可以减少 SYN+ACK 的重传次数,以加快处于 SYN_REVC 状态的 TCP 连接断开。

 
TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

与[转帖]TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?相似的内容:

[转帖]TCP半连接队列和全连接队列

TCP半连接队列和全连接队列 文章很长,建议收藏起来慢慢读! 总目录 博客园版 为您奉上珍贵的学习资源 : 免费赠送 :《尼恩Java面试宝典》持续更新+ 史上最全 + 面试必备 2000页+ 面试必备 + 大厂必备 +涨薪必备免费赠送 经典图书:《Java高并发核心编程(卷1)》 面试必备 + 大

[转帖]TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

https://www.jianshu.com/p/072ed535b1dc 原文地址:TCP 半连接队列和全连接队列满了会发生什么? 一个端口上面的tcp连接创建,基本都只用一个线程处理。如果大并发连接请求过来,处理不了,那么会放入“待处理队列”。为什么不用多线程呢?因为创建连接基本都是内存操作,

[转帖]linux tcp 半连接队列和全连接队列

TCP建立连接的“三次握手”过程 上图就是tcp建联的三次握手过程。 Server端需要先调用bind()方法,绑定ip和端口号,再调用listen()方法,然后就可以等待来自Client连接了Client 调用connect()后,就会发送SYN包到Server,此时Client端处理SYN_SE

[转帖]全连接和半连接

https://www.jianshu.com/p/6a0fcb1008d6 参考 关于TCP 半连接队列和全连接队列 深入浅出TCP中的SYN-Cookies ss命令和Recv-Q和Send-Q状态 本文主要摘抄自关于TCP 半连接队列和全连接队列 1. TCP的全连接和半连接队列 当服务端调用

[转帖]针对容器的nginx优化

针对容器的nginx优化 本篇文章介绍了 Nginx 在容器内使用遇到的CPU核数获取问题以及对应的解决方法。 回顾上篇文章:TCP 半连接队列和全连接队列 背景 容器技术越来越普遍,很多公司已经将容器技术作为基础架构的一部分,容器中可以运行任何软件,包括 Web Server、Applicatio

[转帖]TCP的全连接与半连接队列

TCP的全连接与半连接队列 总结 TCP 全连接队列的最大值: 取决于 somaxconn 和 backlog 之间的最小值, 也就是 min(somaxconn, backlog) TCP 半连接队列的最大值: min(min(somaxconn,backlog),tcp_max_syn_back

[转帖]TCP三次握手详解,滑动窗口,拥塞窗口,网络包路由过程,全连接队列,半连接队列

众所周知,网络分层有传统的OSI七层模型和后来的基于TCP/IP的四层模型: 那么在一次网络的传输过程中具体的流程是怎么样的,我们先从一个数据包的传输说起(以TCP为例): TCP协议根据上层应用提供的信息生成TCP报文 TCP报文在交由下面的IP层(网络层)进行处理,委托IP模块将TCP报文封装成

[转帖]TCP的blacklog之全连接队列与半连接队列的深入研究

文章目录 Linux内核探测工具systemtap的安装与使用backlog、半连接队列、全连接队列是什么半连接队列、全连接队列基本概念 linux 内核是如何计算半连接队列、全连接队列的半连接队列的大小的计算模拟半连接队列占满全连接队列(Accept Queue) SYN+ACK重传次数全连接队列

[转帖]TCP的半关闭、半连接、半打开

参考:《UNIX 网络编程 · 卷1 : 套接字联网API》 TCP 半关闭 如果将客户端与服务器之间的网络作为全双工管道来考虑,请求是从客户端向服务器发送,应答是从服务器向客户端发送,其如下图所示: 上图假设 RTT 为 8,且服务器没有处理时间且请求大小与应答大小相同。既然从管道发出到管道的另一

[转帖]TCP timestamp 选项那点事

https://switch-router.gitee.io/blog/tcp-timestamp/ TCP 最早在 RFC1323 [] 中引入了 timestamp 选项, 并在后来的 RFC7323 中进行了更新。引入 timestamp 最初有两个目的:1.更精确地估算报文往返时间(roun