JVM是Java底层核心要素,可以说Java生态的东西都是运行在JVM里面的。From:https://docs.oracle.com/javase/8/docs/
JVM参数的含义
JVM参数说明
参数名称 | 含义 | 默认值 | |
-Xms | 初始堆大小 | 物理内存的1/64(<1GB) | 默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制. |
-Xmx | 最大堆大小 | 物理内存的1/4(<1GB) | 默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制 |
-Xmn | 年轻代大小(1.4or lator) | 注意:此处的大小是(eden+ 2 survivor space).与jmap -heap中显示的New gen是不同的。 整个堆大小=年轻代大小 + 年老代大小 + 持久代大小. 增大年轻代后,将会减小年老代大小.此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8 | |
-XX:NewSize | 设置年轻代大小(for 1.3/1.4) | ||
-XX:MaxNewSize | 年轻代最大值(for 1.3/1.4) | ||
-XX:PermSize | 设置持久代(perm gen)初始值 | 物理内存的1/64 | |
-XX:MaxPermSize | 设置持久代最大值 | 物理内存的1/4 | |
-Xss | 每个线程的堆栈大小 | JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K.更具应用的线程所需内存大小进行 调整.在相同物理内存下,减小这个值能生成更多的线程.但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右 一般小的应用, 如果栈不是很深, 应该是128k够用的 大的应用建议使用256k。这个选项对性能影响比较大,需要严格的测试。(校长) 和threadstacksize选项解释很类似,官方文档似乎没有解释,在论坛中有这样一句话:"” -Xss is translated in a VM flag named ThreadStackSize” 一般设置这个值就可以了。 | |
-XX:ThreadStackSize | Thread Stack Size | (0 means use default stack size) [Sparc: 512; Solaris x86: 320 (was 256 prior in 5.0 and earlier); Sparc 64 bit: 1024; Linux amd64: 1024 (was 0 in 5.0 and earlier); all others 0.] | |
-XX:NewRatio | 年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代) | -XX:NewRatio=4表示年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5 Xms=Xmx并且设置了Xmn的情况下,该参数不需要进行设置。 | |
-XX:SurvivorRatio | Eden区与Survivor区的大小比值 | 设置为8,则两个Survivor区与一个Eden区的比值为2:8,一个Survivor区占整个年轻代的1/10 | |
-XX:LargePageSizeInBytes | 内存页的大小不可设置过大, 会影响Perm的大小 | =128m | |
-XX:+UseFastAccessorMethods | 原始类型的快速优化 | ||
-XX:+DisableExplicitGC | 关闭System.gc() | 这个参数需要严格的测试 | |
-XX:MaxTenuringThreshold | 垃圾最大年龄 | 如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代. 对于年老代比较多的应用,可以提高效率.如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活 时间,增加在年轻代即被回收的概率 该参数只有在串行GC时才有效. | |
-XX:+AggressiveOpts | 加快编译 | ||
-XX:+UseBiasedLocking | 锁机制的性能改善 | ||
-Xnoclassgc | 禁用垃圾回收 | ||
-XX:SoftRefLRUPolicyMSPerMB | 每兆堆空闲空间中SoftReference的存活时间 | 1s | softly reachable objects will remain alive for some amount of time after the last time they were referenced. The default value is one second of lifetime per free megabyte in the heap |
-XX:PretenureSizeThreshold | 对象超过多大是直接在旧生代分配 | 0 | 单位字节 新生代采用Parallel Scavenge GC时无效 另一种直接在旧生代分配的情况是大的数组对象,且数组中无外部引用对象. |
-XX:TLABWasteTargetPercent | TLAB占eden区的百分比 | 1% | |
-XX:+CollectGen0First | FullGC时是否先YGC | false |
并行收集器相关参数
-XX:+UseParallelGC | Full GC采用parallel MSC (此项待验证) | 选择垃圾收集器为并行收集器.此配置仅对年轻代有效.即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集.(此项待验证) | |
-XX:+UseParNewGC | 设置年轻代为并行收集 | 可与CMS收集同时使用 JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值 | |
-XX:ParallelGCThreads | 并行收集器的线程数 | 此值最好配置与处理器数目相等 同样适用于CMS | |
-XX:+UseParallelOldGC | 年老代垃圾收集方式为并行收集(Parallel Compacting) | 这个是JAVA 6出现的参数选项 | |
-XX:MaxGCPauseMillis | 每次年轻代垃圾回收的最长时间(最大暂停时间) | 如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值. | |
-XX:+UseAdaptiveSizePolicy | 自动选择年轻代区大小和相应的Survivor区比例 | 设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开. | |
-XX:GCTimeRatio | 设置垃圾回收时间占程序运行时间的百分比 | 公式为1/(1+n) | |
-XX:+ScavengeBeforeFullGC | Full GC前调用YGC | true | Do young generation GC prior to a full GC. (Introduced in 1.4.1.) |
CMS相关参数
-XX:+UseConcMarkSweepGC | 使用CMS内存收集 | 测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明.所以,此时年轻代大小最好用-Xmn设置.??? | |
-XX:+AggressiveHeap | 试图是使用大量的物理内存 长时间大内存使用的优化,能检查计算资源(内存, 处理器数量) 至少需要256MB内存 大量的CPU/内存, (在1.4.1在4CPU的机器上已经显示有提升) | ||
-XX:CMSFullGCsBeforeCompaction | 多少次后进行内存压缩 | 由于并发收集器不对内存空间进行压缩,整理,所以运行一段时间以后会产生"碎片",使得运行效率降低.此值设置运行多少次GC以后对内存空间进行压缩,整理. | |
-XX:+CMSParallelRemarkEnabled | 降低标记停顿 | ||
-XX+UseCMSCompactAtFullCollection | 在FULL GC的时候, 对年老代的压缩 | CMS是不会移动内存的, 因此, 这个非常容易产生碎片, 导致内存不够用, 因此, 内存的压缩这个时候就会被启用。 增加这个参数是个好习惯。 可能会影响性能,但是可以消除碎片 | |
-XX:+UseCMSInitiatingOccupancyOnly | 使用手动定义初始化定义开始CMS收集 | 禁止hostspot自行触发CMS GC | |
-XX:CMSInitiatingOccupancyFraction=70 | 使用cms作为垃圾回收 使用70%后开始CMS收集 | 92 | 为了保证不出现promotion failed(见下面介绍)错误,该值的设置需要满足以下公式CMSInitiatingOccupancyFraction计算公式 |
-XX:CMSInitiatingPermOccupancyFraction | 设置Perm Gen使用到达多少比率时触发 | 92 | |
-XX:+CMSIncrementalMode | 设置为增量模式 | 用于单CPU情况 | |
-XX:+CMSClassUnloadingEnabled |
辅助信息
-XX:+PrintGC | 输出形式: [GC 118250K->113543K(130112K), 0.0094143 secs] | ||
-XX:+PrintGCDetails | 输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] | ||
-XX:+PrintGCTimeStamps | |||
-XX:+PrintGC:PrintGCTimeStamps | 可与-XX:+PrintGC -XX:+PrintGCDetails混合使用 输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs] | ||
-XX:+PrintGCApplicationStoppedTime | 打印垃圾回收期间程序暂停的时间.可与上面混合使用 | 输出形式:Total time for which application threads were stopped: 0.0468229 seconds | |
-XX:+PrintGCApplicationConcurrentTime | 打印每次垃圾回收前,程序未中断的执行时间.可与上面混合使用 | 输出形式:Application time: 0.5291524 seconds | |
-XX:+PrintHeapAtGC | 打印GC前后的详细堆栈信息 | ||
-Xloggc:filename | 把相关日志信息记录到文件以便分析. 与上面几个配合使用 | ||
-XX:+PrintClassHistogram | garbage collects before printing the histogram. | ||
-XX:+PrintTLAB | 查看TLAB空间的使用情况 | ||
XX:+PrintTenuringDistribution | 查看每次minor GC后新的存活周期的阈值 | Desired survivor size 1048576 bytes, new threshold 7 (max 15) |
一个性能较好的web服务器jvm参数配置
- -server//服务器模式
- -Xmx2g //JVM最大允许分配的堆内存,按需分配
- -Xms2g //JVM初始分配的堆内存,一般和Xmx配置成一样以避免每次gc后JVM重新分配内存。
- -Xmn256m //年轻代内存大小,整个JVM内存=年轻代 + 年老代 + 持久代
- -XX:PermSize=128m //持久代内存大小
- -Xss256k //设置每个线程的堆栈大小
- -XX:+DisableExplicitGC //忽略手动调用GC, System.gc()的调用就会变成一个空调用,完全不触发GC
- -XX:+UseConcMarkSweepGC //并发标记清除(CMS)收集器
- -XX:+CMSParallelRemarkEnabled //降低标记停顿
- -XX:+UseCMSCompactAtFullCollection //在FULL GC的时候对年老代的压缩
- -XX:LargePageSizeInBytes=128m //内存页的大小
- -XX:+UseFastAccessorMethods //原始类型的快速优化
- -XX:+UseCMSInitiatingOccupancyOnly //使用手动定义初始化定义开始CMS收集
- -XX:CMSInitiatingOccupancyFraction=70 //使用cms作为垃圾回收使用70%后开始CMS收集
-
-
-Xmn和-Xmx之比大概是1:9,如果把新生代内存设置得太大会导致young gc时间较长
一个好的Web系统应该是每次http请求申请内存都能在young gc回收掉,full gc永不发生,当然这是最理想的情况,xmn的值应该是保证够用(够http并发请求之用)的前提下设置得尽量小
### JDK各代使用
前言:在 JDK1.8 环境下,默认使用的是Parallel Scavenge + Parallel Old垃
圾收集器;注:在 JDK 7U4 之前确实 UserParallelGC 用的就是 Serial,在这个版本之后 Parallel 已经很成熟了,所以直接替换了旧的收集器,所以 JDK 7u4 以后的 7 和 JDK 8 老年代默认使用的都是 Parallel 收集器
JDK 1.9默认采用的就是 G1 垃圾回收器了;
- 2018年9月:JDK11发布,引入
Epsilon
垃圾回收器,又被称为"No-0p
(无操作) "回收器。同时,引入了可伸缩的低延迟垃圾回收器ZGC
(Experimental
)。- 2019年3月:JDK12发布,增强G1收集器,实现自动返还未用堆内存给操作系统。同时,引入了低停顿时间的收集器
ShenandoahGC
(Experimental
)。- 2019年9月:JDK13发布,增强ZGC收集器,实现自动返还未用堆内存给操作系统。
- 2020年3月:JDK14发布,剔除了CMS收集器,同时扩展
ZGC
在macOS
和Windows
上的应用,增强G1
支持NUMA
架构。
当整个堆空间中的空闲Region
不足以支撑拷贝对象或由于元数据空间满了等原因触发,在发生FullGC
时,G1首先会停止系统所有用户线程,然后采用单线程进行标记、清理和压缩整理内存,以便于清理出足够多的空闲Region
来供下一次MixedGC
使用。但该过程是单线程串行收集的,因此这个过程非常耗时的(ShenandoahGC
中采用了多线程并行收集)。
所以G1使用内存最好在8G以上。
- 堆空间内
50%
以上的内存会被存活占用的应用 - ②分配速度和晋升速度特别快的应用
- ③至少
8GB
以上堆内存的应用 - ④采用原本分代收集器GC时间会长达
1s+
的应用 - ⑤追求停顿时间在
500ms
以内的应用
G1、ZGC与ShenandoahGC区别
对比项 | G1 | ZGC | ShenandoahGC |
---|---|---|---|
是否支持并发回收 | 不支持 | 支持 | 支持 |
最大堆空间大小 | 达到上百GB停顿时间会很长 | 16TB | 256TB |
平均停顿 | 500ms以内 | 10ms以内 | 1~20ms左右 |
是否支持指针压缩 | 支持 | 不支持 | 支持 |
其实从上面的数据来看,好像G1收集器压根比不上其他两款,但实际上并非如此,因为每款收集器都会有自己的适用场景,就好比在几百MB
的堆空间中,装载ZGC就一定比G1好吗?其实是不见得的。因为G1中存在分代的逻辑,而ZGC是单代的,所以如果在分配速率较快的情况下,ZGC可能会跟不上(因为ZGC的整个GC过程很久),而G1则可以完全胜任联系作者获得授权,非商业转载请注明出处。