github地址:https://github.com/xiaojiesir/mini-rpc
RPC 又称远程过程调用(Remote Procedure Call),用于解决分布式系统中服务之间的调用问题。通俗地讲,就是开发者能够像调用本地方法一样调用远程的服务。下面我们通过一幅图来说说 RPC 框架的基本架构。
RPC 框架包含三个最重要的组件,分别是客户端、服务端和注册中心。在一次 RPC 调用流程中,这三个组件是这样交互的:
虽然 RPC 调用流程很容易理解,但是实现一个完整的 RPC 框架设计到很多内容,例如服务注册与发现、通信协议与序列化、负载均衡、动态代理等,下面我们一一进行初步地讲解。
在分布式系统中,不同服务之间应该如何通信呢?传统的方式可以通过 HTTP 请求调用、保存服务端的服务列表等,这样做需要开发者主动感知到服务端暴露的信息,系统之间耦合严重。为了更好地将客户端和服务端解耦,以及实现服务优雅上线和下线,于是注册中心就出现了。
在 RPC 框架中,主要是使用注册中心来实现服务注册和发现的功能。服务端节点上线后自行向注册中心注册服务列表,节点下线时需要从注册中心将节点元数据信息移除。客户端向服务端发起调用时,自己负责从注册中心获取服务端的服务列表,然后在通过负载均衡算法选择其中一个服务节点进行调用。以上是最简单直接的服务端和客户端的发布和订阅模式,不需要再借助任何中间服务器,性能损耗也是最小的。
现在思考一个问题,服务在下线时需要从注册中心移除元数据,那么注册中心怎么才能感知到服务下线呢?我们最先想到的方法就是节点主动通知的实现方式,当节点需要下线时,向注册中心发送下线请求,让注册中心移除自己的元数据信息。但是如果节点异常退出,例如断网、进程崩溃等,那么注册中心将会一直残留异常节点的元数据,从而可能造成服务调用出现问题。
为了避免上述问题,实现服务优雅下线比较好的方式是采用主动通知 + 心跳检测的方案。除了主动通知注册中心下线外,还需要增加节点与注册中心的心跳检测功能,这个过程也叫作探活。心跳检测可以由节点或者注册中心负责,例如注册中心可以向服务节点每 60s 发送一次心跳包,如果 3 次心跳包都没有收到请求结果,可以任务该服务节点已经下线。
由此可见,采用注册中心的好处是可以解耦客户端和服务端之间错综复杂的关系,并且能够实现对服务的动态管理。服务配置可以支持动态修改,然后将更新后的配置推送到客户端和服务端,无须重启任何服务。
既然 RPC 是远程调用,必然离不开网络通信协议。客户端在向服务端发起调用之前,需要考虑采用何种方式将调用信息进行编码,并传输到服务端。因为 RPC 框架对性能有非常高的要求,所以通信协议应该越简单越好,这样可以减少编解码的性能损耗。RPC 框架可以基于不同的协议实现,大部分主流 RPC 框架会选择 TCP、HTTP 协议,出名的 gRPC 框架使用的则是 HTTP2。TCP、HTTP、HTTP2 都是稳定可靠的,但其实使用 UDP 协议也是可以的,具体看业务使用的场景。成熟的 RPC 框架能够支持多种协议,例如阿里开源的 Dubbo 框架被很多互联网公司广泛使用,其中可插拔的协议支持是 Dubbo 的一大特色,这样不仅可以给开发者提供多种不同的选择,而且为接入异构系统提供了便利。
客户端和服务端在通信过程中需要传输哪些数据呢?这些数据又该如何编解码呢?如果采用 TCP 协议,你需要将调用的接口、方法、请求参数、调用属性等信息序列化成二进制字节流传递给服务提供方,服务端接收到数据后,再把二进制字节流反序列化得到调用信息,然后利用反射的原理调用对应方法,最后将返回结果、返回码、异常信息等返回给客户端。所谓序列化和反序列化就是将对象转换成二进制流以及将二进制流再转换成对象的过程。因为网络通信依赖于字节流,而且这些请求信息都是不确定的,所以一般会选用通用且高效的序列化算法。比较常用的序列化算法有 FastJson、Kryo、Hessian、Protobuf 等,这些第三方序列化算法都比 Java 原生的序列化操作都更加高效。Dubbo 支持多种序列化算法,并定义了 Serialization 接口规范,所有序列化算法扩展都必须实现该接口,其中默认使用的是 Hessian 序列化算法。
成熟的 RPC 框架一般会提供四种调用方式,分别为同步 Sync、异步 Future、回调 Callback和单向 Oneway。RPC 框架的性能和吞吐量与合理使用调用方式是息息相关的,下面我们逐一介绍下四种调用方式的实现原理。
四种调用方式都各有优缺点,很难说异步方式一定会比同步方式效果好,在不用的业务场景可以按需选取更合适的调用方式。
线程模型是 RPC 框架需要重点关注的部分,与我们之前介绍的 Netty Reactor 线程模型有什么区别和联系吗?
首先我们需要明确 I/O 线程和业务线程的区别,以 Dubbo 框架为例,Dubbo 使用 Netty 作为底层的网络通信框架,采用了我们熟悉的主从 Reactor 线程模型,其中 Boss 和 Worker 线程池就可以看作 I/O 线程。I/O 线程可以理解为主要负责处理网络数据,例如事件轮询、编解码、数据传输等。如果业务逻辑能够立即完成,也可以使用 I/O 线程进行处理,这样可以省去线程上下文切换的开销。如果业务逻辑耗时较多,例如包含查询数据库、复杂规则计算等耗时逻辑,那么 I/O 必须将这些请求分发到业务线程池中进行处理,以免阻塞 I/O 线程。
那么哪些请求需要在 I/O 线程中执行,哪些又需要在业务线程池中执行呢?Dubbo 框架的做法值得借鉴,它给用户提供了多种选择,它一共提供了 5 种分发策略,如下表格所示。
策略类型 | 策略说明 |
all | 所有请求、事件、心跳等都会分发到业务线程池,即worker线程接收到事件后,会将该事件提交到业务线程池中。 |
connection | 连接建立、断开事件放入队列排队执行,其他所有消息都分发到业务线程池执行。 |
direct |
所有事件都在I/O线程中执行。 |
execution |
只有请求类的消息分发到业务线程池执行,响应以及其他事件消息直接在I/O线程中执行。 |
message | 只有请求响应消息被分发到业务线程池执行,其他事件消息都在I/O线程中执行。 |
在分布式系统中,服务提供者和服务消费者都会有多台节点,如何保证服务提供者所有节点的负载均衡呢?客户端在发起调用之前,需要感知有多少服务端节点可用,然后从中选取一个进行调用。客户端需要拿到服务端节点的状态信息,并根据不同的策略实现负载均衡算法。负载均衡策略是影响 RPC 框架吞吐量很重要的一个因素,下面我们介绍几种最常用的负载均衡策略。
此外,负载均衡算法可以是多种多样的,客户端可以记录例如健康状态、连接数、内存、CPU、Load 等更加丰富的信息,根据综合因素进行更好地决策。
RPC 框架怎么做到像调用本地接口一样调用远端服务呢?这必须依赖动态代理来实现。需要创建一个代理对象,在代理对象中完成数据报文编码,然后发起调用发送数据给服务提供方,以此屏蔽 RPC 框架的调用细节。因为代理类是在运行时生成的,所以代理类的生成速度、生成的字节码大小都会影响 RPC 框架整体的性能和资源消耗,所以需要慎重选择动态代理的实现方案。动态代理比较主流的实现方案有以下几种:JDK 动态代理、Cglib、Javassist、ASM、Byte Buddy,我们简单做一个对比和介绍。
至此,我们已经对实现 RPC 框架的几个核心要点做了一个大致的介绍,后续说下具体实现。