[转帖]Kafka之ISR机制的理解

kafka,isr,机制,理解 · 浏览次数 : 0

小编点评

**关于木桶原理** **木桶原理**是指把每个replica当作一个木桶的板子,桶能装多少水只取决于最短的那块板子。 **HW就是ISR中最小的LEO** 有人也这么说的。有说HW < LEO的,有说HW < LEO. **HW < LEO** 是指HW是ISR中最小的LEO。

正文

Kafka对于producer发来的消息怎么保证可靠性?

每个partition都给配上副本,做数据同步,保证数据不丢失。

副本数据同步策略

zookeeper不同的是,Kafka选择的是全部完成同步,才发送ack。但是又有所区别。

所以,你们才会在各种博客看到这句话【kafka不是完全同步,也不是完全异步,是一种ISR机制

这句话对也不对,不对也对(谜语人......)

首先笔者认为:Kafka使用的就是完全同步方案。

完全同步的优点

同样为了容忍 n 台节点的故障,过半机制需要 2n+1 个副本,而全部同步方案只需要 n+1 个副本,

而 Kafka 的每个分区都有大量的数据,过半机制方案会造成大量数据的冗余。(这就是和zookeeper的不同)

完全同步会有什么问题?

假设就有这么一个follower延迟太高或者某种故障的情况出现,导致迟迟不能与leader进行同步。

怎么办?leader等还是不等?

等吧:producer有话要说:“Kafka也不行啊,处理个消息这么费劲,垃圾,你等NM呢等”

不等:那你Kafka对外说完全同步个鸡儿,你这是完全同步么?

基于此,Kafka的设计者和开发者想出了一个非常鸡贼的点子:ISR

什么是ISR?

先来看几个概念

1、AR(Assigned Repllicas)一个partition的所有副本(就是replica,不区分leader或follower)

2、ISR(In-Sync Replicas)能够和 leader 保持同步的 follower + leader本身 组成的集合。

3、OSR(Out-Sync Relipcas)不能和 leader 保持同步的 follower 集合

4、公式:AR = ISR + OSR

所以,看明白了吗?

Kafka对外依然可以声称是完全同步,但是承诺是对AR中的所有replica完全同步了吗?

并没有。Kafka只保证对ISR集合中的所有副本保证完全同步。

至于,ISR到底有多少个follower,那不知道,别问,问就是完全同步,你再问就多了。

这就好比网购买一送一,结果邮来了一大一小两个产品。

你可能觉得有问题,其实是没问题的,商家说送的那个是一模一样的了吗?并没有。

ISR就是这个道理,Kafka是一定会保证leader接收到的消息完全同步给ISR中的所有副本。

而最坏的情况下,ISR中只剩leader自己。

基于此,上述完全同步会出现的问题就不是问题了。

因为ISR的机制就保证了,处于ISR内部的follower都是可以和leader进行同步的,一旦出现故障或延迟,就会被踢出ISR。

ISR 的核心就是:动态调整

总结:Kafka采用的就是一种完全同步的方案,而ISR是基于完全同步的一种优化机制。

follower的作用

读写都是由leader处理,follower只是作备份功能,不对外提供服务。

什么情况ISR中的replica会被踢出ISR?

以前有2个配置

  1. # 默认10000 即 10秒
  2. replica.lag.time.max.ms
  3. # 允许 follower 副本落后 leader 副本的消息数量,超过这个数量后,follower 会被踢出 ISR
  4. replica.lag.max.messages

说白了就是一个衡量leader和follower之间差距的标准。

一个是基于时间间隔,一个是基于消息条数。

0.9.0.0版本之后,移除了replica.lag.max.messages 配置。

为什么?

因为producer是可以批量发送消息的,很容易超过replica.lag.max.messages,那么被踢出ISR的follower就是受了无妄之灾。

他们都是没问题的,既没有出故障也没高延迟,凭什么被踢?

replica.lag.max.messages调大呢?调多大?太大了是否会有漏网之鱼,造成数据丢失风险?

这就是replica.lag.max.messages的设计缺陷。

replica.lag.time.max.ms的误区

【只要在 replica.lag.time.max.ms 时间内 follower 有同步消息,即认为该 follower 处于 ISR 中】

你去网上看博客,很多博客表达的就是这个意思,不过笔者认为这么描述很容易误导初学者。

那我是不是可以理解为,follower有个定时任务,只要在replica.lag.time.max.ms时间内去leader那pull数据就行了。

其实不是的。千万不要这么认为,因为这里还涉及一个速率问题(你理解为蓄水池一个放水一个注水的问题)。

如果leader副本的消息流入速度大于follower副本的拉取速度时,你follower就是实时同步有什么用?

典型的出工不出力,消息只会越差越多,这种follower肯定是要被踢出ISR的。

当follower副本将leader副本的LEO之前的日志全部同步时,则认为该follower副本已经追赶上leader副本。

此时更新该副本的lastCaughtUpTimeMs标识。

Kafka的副本管理器(ReplicaManager)启动时会启动一个副本过期检测的定时任务,

会定时检查当前时间与副本的lastCaughtUpTimeMs差值是否大于参数replica.lag.time.max.ms指定的值

所以replica.lag.time.max.ms的正确理解是:

follower在过去的replica.lag.time.max.ms时间内,已经追赶上leader一次了。

follower到底出了什么问题?

两个方面,一个是Kafka自身的问题,另一个是外部原因

Kafka源码注释中说明了一般有两种情况会导致副本失效:

1、follower副本进程卡住,在一段时间内根本没有想leader副本发起同步请求,比如频繁的Full GC。

2、follower副本进程同步过慢,在一段时间内都无法追赶上leader副本,比如IO开销过大。

1、通过工具增加了副本因子,那么新增加的副本在赶上leader副本之前也都是处于失效状态的。

2、如果一个follower副本由于某些原因(比如宕机)而下线,之后又上线,在追赶上leader副本之前也是出于失效状态。

什么情况OSR中的replica会重新加入ISR?

基于上述,replica重新追上了leader,就会回到ISR中。

相关的重要概念

需要先明确几个概念:

1、LEO(last end offset):

当前replica存的最大的offset的下一个值

2、HW(high watermark):

小于 HW 值的offset所对应的消息被认为是“已提交”或“已备份”的消息,才对消费者可见。

假设ISR中目前有1个leader,3个follower。

1、leader接收一个消息,自己保存后,马上发送3个请求通知3个follower赶紧保存

2、等待3个follower响应保存成功

3、响应producer,消息提交成功

你是这么想的么?反正当时我是这么想的。

实际上不是的,这个同步是follower主动去请求leader进行同步的。

因为是每个follower情况不一样,所以才会出现LEO和HW的概念。

简言之,木桶原理

replica里存了多少数据和consumer能消费多少数据,不是一回事。

所谓木桶原理,就是把每个replica当作一个木桶的板子,桶能装多少水只取决于最短的那块板子。

这就是也有些人把HW叫成 高水位 的原因。

而 HW 的概念,也契合前文提到的【完全同步】,HW之前的所有消息,在ISR中是完全同步的。

写在最后的话

【推荐大家在看Kafka相关博客文章视频的时候,遇到任何问题不要纠结,赶紧翻书,Kafka相关的博客真的一言难尽】

就这块的知识点,大家请注意,你去看博客或者公众号或者培训机构的视频,介绍的五花八门, 含糊不清。

咱也不知道都是在哪学的.....笔者在Kafka官方文档中搜索关键字,并未搜索到,也可能是我的搜索方式不对,

总之那些又画线,又上色的,图整了不少,整的花里胡哨的,都TM不一样。

还俗称“高水位”,俩破单词不够你得瑟的了,你是不是觉得你讲的生动形象???

前提是知识点要准确啊,瞎JB比喻!

如果你把consumer可见消息比喻成水,HW比喻“水位”,

那么HW就是consumer可见的那个最大的offset,因为水位就是水面,水面也是水。

而如果不是,那我宁愿把HW比喻成船。紧贴水面的就是船,船永远在水面之上,水涨而船高。

很多图,都把replica化成了数组的模样,offset好似数组的index,

如果是这样,我宁愿把LEO比喻成 C语言字符串中的 "\0",就是标识位。

笔者猜测,LEO应该除了记录offset,还记录了一个像segment的index文件里的position一样。

指向最后一个消息有啥用,还不是要算一次偏移量,才能记录新消息。如果这个物理地址记录的是最后一个消息的后面的位置,那么新消息进来就能直接定位,直接写文件了。

【HW就是ISR中最小的LEO】有人也这么说的。有说HW <= LEO的,有说HW < LEO。爷吐了.....

随便截2篇博客,大家先尝尝。

我写的只是一个能说服我自己的概念知识点,对错我保证不了。

希望精通源码的大佬看到能在评论区解惑,不胜感激。

                                                                                                   

                                                                                                                            -------   路漫漫其修远兮,我求索NMLB。

文章知识点与官方知识档案匹配,可进一步学习相关知识
云原生入门技能树首页概览13725 人正在系统学习中

与[转帖]Kafka之ISR机制的理解相似的内容:

[转帖]Kafka之ISR机制的理解

Kafka对于producer发来的消息怎么保证可靠性? 每个partition都给配上副本,做数据同步,保证数据不丢失。 副本数据同步策略 和zookeeper不同的是,Kafka选择的是全部完成同步,才发送ack。但是又有所区别。 所以,你们才会在各种博客看到这句话【kafka不是完全同步,也不

[转帖]Kafka之ack机制

前言 之前的博客里说了,Kafka的消息同步是一种ISR机制,本质上是“完全同步”的一种优化。 都在说,消息被ISR中所有副本都写入才算写入成功。但是这样未免定的太死板了,所以,Kafka给出了我们选择。 这个选择就是ack机制 生产者参数 request.required.acks 是produc

[转帖]Kafka可靠性之HW与Leader Epoch

《深入理解Kafka:核心设计与实现原理》是基于2.0.0版本的书 在这本书中,终于看懂了笔者之前提过的几个问题 准备知识 1、leader里存着4个数据:leader_LEO、leader_HW、remote_LEO集合、remote_HW集合 2、follower里只保存自身的:follower

[转帖]Kafka故障之磁盘打满

https://www.jianshu.com/p/095e820361ae 问:磁盘打满扩容后能正常重启吗?答:不一定 要看文件格式是否损坏(log、index等)。如果损坏会报错:index file due to requirement failed: Corrupt index found,

[转帖]Kafka常见使用场景与Kafka高性能之道

https://juejin.cn/post/6958997115012186119 消息队列使用场景 队列,在数据结构中是一种先进先出的结构,消息队列可以看成是一个盛放消息的容器,这些消息等待着各种业务来处理。 消息队列是分布式系统中重要的组件,kafka就可以看做是一种消息队列,其大致使用场景:

[转帖]【Kafka】Kafka配置参数详解

Kafka配置参数详解 Kafka得安装与基本命令Kafka配置参数kafka生产者配置参数kafka消费者配置参数 本篇文章只是做一个转载的作用以方便自己的阅读,文章主要转载于: Kafka核心配置参数与机制一文 版权声明:本文为CSDN博主「张行之」的原创文章,遵循CC 4.0 BY-SA版权协

[转帖]java性能分析之火焰图

http://t.zoukankan.com/lemon-le-p-13820204.html 原由 最近因为kafka、zookeeper、ES和相关的Java应用的内存问题搞的头大,做运维将近4年,对Java调优、性能方面的知识了解的少之又少,是时候下定决心来对他多一个学习了。不能一口吃成一个胖

[转帖]sendfile“零拷贝”、mmap内存映射、DMA

https://www.jianshu.com/p/7863667d5fa7 KAFKA推送消息用到了sendfile,落盘技术用到了mmap,DMA贯穿其中。 先说说零拷贝 零拷贝并不是不需要拷贝,而是减少不必要的拷贝次数。通常是说在IO读写过程中。 实际上,零拷贝是有广义和狭义之分,目前我们通常

[转帖]Kafka 基本概念大全

https://my.oschina.net/jiagoushi/blog/5600943 下面给出 Kafka 一些重要概念,让大家对 Kafka 有个整体的认识和感知,后面还会详细的解析每一个概念的作用以及更深入的原理 ・Producer:消息生产者,向 Kafka Broker 发消息的客户端

[转帖]Kafka 与RocketMQ 落盘机制比较

https://www.jianshu.com/p/fd50befccfdd 引言 前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准——软件可靠性。 何为“可靠性”? 先看下面这种情况:有A,B两辆越野汽车,在城市的周边地区均能很好应对泥泞的路况