http://home.ustc.edu.cn/~shaojiemike/posts/simd/
SIMD全称Single Instruction Multiple Data,单指令多数据流,能够复制多个操作数,并把它们打包在大型寄存器的一组指令集。
通过使用矢量寄存器,指令译码后几个执行部件同时访问内存,一次性获得所有操作数进行运算。这个特点使SIMD特别适合于多媒体应用等数据密集型运算。如 AMD的3D NOW!技术
MMX是由57条指令组成的SIMD多媒体指令集,MMX将64位寄存当作2个32位或8个8位寄存器来用,只能处理整形计算,这样的64位寄存器有8组,分别命名为MM0~MM7.这些寄存器不是为MMX单独设置的,而是借用的FPU的寄存器,占用浮点寄存器进行运算(64位MMX寄存器实际上就是浮点数寄存器的别名),以至于MMX指令和浮点数操作不能同时工作。为了减少在MMX和浮点数模式切换之间所消耗的时间,程序员们尽可能减少模式切换的次数,也就是说,这两种操作在应用上是互斥的。
SSE为Streaming SIMD Extensions的缩写。Intel SSE指令通过128bit位宽的专用寄存器, 支持一次操作128bit数据. float是单精度浮点数, 占32bit, 那么可以使用一条SSE指令一次计算4个float数。注意这些SSE指令要求参数中的内存地址必须对齐于16字节边界。
SSE有8个128位寄存器,XMM0 ~XMM7。此外SSE还提供了新的控制/状态寄存器MXCSR。为了回答这个问题,我们需要了解CPU的架构。每个core是独占register的
addps xmm0, xmm1 ; reg-reg addps xmm0, [ebx] ; reg-mem sse提供了两个版本的指令,其一以后缀ps结尾,这组指令对打包单精度浮点值执行类似mmx操作运算,而第二种后缀ss
Advanced Vector Extensions。较新的Intel CPU都支持AVX指令集, 它可以一次操作256bit数据, 是SSE的2倍,可以使用一条AVX指令一次计算8个float数。AVX指令要求内存地址对齐于32字节边界。
根据参考文章,其中用gcc编译AVX版代码时需要加-mavx选项.开启-O3选项,一般不用将代码改成多次计算和内存对齐。
gcc -march=native -c -Q --help=target # 查看支持的指令集
g++ -O2 -ftree-vectorize -ftree-vectorizer-verbose=9 -S -c foo.cpp -o /dev/stdout | c++filt # 查看汇编
OBJDUMP # 反汇编
c++函数在linux系统下编译之后会变成如下样子
_ZNK4Json5ValueixEPKc
在linux命令行使用c++filter
$ c++filt _ZNK4Json5ValueixEPKc
Json::Value::operator[](char const*) const
可以得到函数的原始名称, 展开后续追踪
-Rpass=loop-vectorize
identifies loops that were successfully vectorized.
-Rpass-missed=loop-vectorize
identifies loops that failed vectorization and indicates if vectorization was specified.
-Rpass-analysis=loop-vectorize
identifies the statements that caused vectorization to fail.
xmm 寄存器
movsd
循环展开8次
暂无
暂无
https://www.dazhuanlan.com/2020/02/01/5e3475c89d5bd/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/