Redis内存兜底策略——内存淘汰及回收机制

内存,回收,机制,策略 · 浏览次数 : 548

小编点评

# 内存淘汰策略 # maxmemory-policy:内存淘汰策略,可选值为noeviction、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu、volatile-lfu、volatile-ttl其中的一个 # maxmemory-samples:抽取数量,默认为5,如果设为10将非常接近真实的LRU,但需要更多CPU资源,如果设为3将非常快,但是非常不准确 # maxmemory-eviction-tenacity:内存淘汰韧性,默认为10maxmemory-eviction-tenacity为0时,表示不进行任何淘汰,相当于noeviction策略maxmemory-eviction-tenacity为10时,表示每次淘汰键的数量为内存使用量的0.1%,每秒最多淘汰10次hz # 后台任务执行间隔hz 10 # 是否开启动态间隔dynamic-hz yes # 有大量客户端连接进来时,会以hz的配置值将作为基线,将hz的实际值设置为hz的配置值的整数倍,用来节省CPU资源 #总结总结如下: # Redis内存淘汰机制是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据 # Redis提供了八种内存淘汰策略,分别是:noeviction:不会淘汰任何键,达到内存限制后返回错误 #其他内存回收策略包括:定期删除和内存回收机制

正文

Redis内存兜底策略——内存淘汰及回收机制

Redis内存淘汰及回收策略都是Redis内存优化兜底的策略,那它们是如何进行兜底的呢?先来说明一下什么是内存淘汰和内存回收策略:

  • Redis内存淘汰:当Redis的内存使用超过配置的限制时,根据一定的策略删除一些键,以释放内存空间
  • Redis内存回收:Redis通过定期删除惰性删除两种方式来清除过期的键,以保证数据的时效性和减少内存占用

内存淘汰策略

Redis内存淘汰策略是指当Redis的内存使用超过配置的最大值时,如何选择一些键进行删除,以释放空间给新的数据。Redis提供了八种内存淘汰策略,分别是:

  • noeviction:不会淘汰任何键,达到内存限制后返回错误
  • allkeys-random:在所有键中,随机删除键
  • volatile-random:在设置了过期时间的键中,随机删除键
  • allkeys-lru:通过LRU算法淘汰最近最少使用的键,保留最近使用的键
  • volatile-lru:从设置了过期时间的键中,通过LRU算法淘汰最近最少使用的键
  • allkeys-lfu:从所有键中淘汰使用频率最少的键。从所有键中驱逐使用频率最少的键
  • volatile-lfu:从设置了过期时间的键中,通过LFU算法淘汰使用频率最少的键
  • volatile-ttl:从设置了过期时间的键中,淘汰马上就要过期的键

LRU和LFU

LRU(Least Recently Used)算法为最近最少使用算法,根据数据的历史访问记录来进行淘汰数据,优先移除最近最少使用的数据,这种算法认为最近使用的数据很大概率将会再次被使用

LFU(least frequently used)算法为最少频率使用算法,优先移除使用频率最少的数据,这种算法认为使用频率高的数据很大概率将会再次被使用

LRU和Redis的近似LRU

LRU(least frequently used)算法为最近最少使用算法,根据数据的历史访问记录来进行淘汰数据,优先移除最近最少使用的数据,这种算法认为最近使用的数据很大概率将会再次被使用

什么是LRU

在算法的选择上,Redis需要能够快速地查询、添加、删除数据,也就是说查询、添加、删除的时间复杂读需为O(1)。哈希表能保证查询数据的时间复杂度为O(1)。而双向链表能保证添加、删除数据的时间复杂度为O(1),如下:

image

Redis的近似LRU

如前文所述,真实的 LRU 算法需要用链表管理所有的数据,每次访问一个数据就要移动链表节点,这样会占用额外的空间和时间。而Redis通过近似 LRU 算法,随机抽样一些键,然后比较它们的访问时间戳,这样可以节省内存和提高性能。而Redis 的近似 LRU 算法的具体实现如下:

  • 每个键值对对象(redisObject)中有一个 24 位的 lru 字段,用于记录每个数据最近一次被访问的时间戳
  • 每次按键获取一个值的时候,都会调用 lookupKey 函数,如果配置使用了 LRU 模式,该函数会更新 value 中的 lru 字段为当前秒级别的时间戳
  • 当内存达到限制时,Redis 会维护一个候选集合(pool),大小为 16
  • Redis 会随机从字典中取出 N 个键(N 可以通过 maxmemory-samples 参数设置,默认为 5),将 lru 字段值最小的键放入候选集合中,并按照 lru 大小排序
  • 如果候选集合已满,那么新加入的键必须有比集合中最大的 lru 值更小的 lru 值,才能替换掉原来的键
  • 当需要淘汰数据时,直接从候选集合中选择一个 lru 最小的键进行淘汰

举个例子,假设我们按照下面的顺序访问缓存中的数据:h,e,l,l,o,w,o,r,l,d且内存中只能存储3个字符,下面是每次访问或插入后缓存的状态,其中括号内是lru字段的值,假设初始时间戳为0

缓存 状态
访问h h(0)
访问e e(1),h(0)
访问l l(2),e(1),h(0)
访问l l(3),e(1),h(0)
插入o o(4),l(3),e(1)
插入w w(5),o(4),l(3)
访问o o(6),w(5),l(3)
插入r r(7),o(6),w(5)
插入l l(8),r(7),o(6)
插入d d(9),l(8),r(7)

LFU

LFU(Least Frequently Used)是最不经常使用算法,它的思想是淘汰访问频率最低的数据。Redis在3.0版本之后引入了LFU算法,并对lru字段进行了拆分。

typedef struct redisObject {
    unsigned type:4;
    unsigned encoding:4;
    unsigned lru:LRU_BITS;
    int refcount;
    void *ptr;
} robj;

我们看lru:LRU_BITS这个字段,这个字段在LRU算法中的意义是时间戳,精确到秒。而在LFU 算法中,将它拆为两部分前16bits为时间戳,精确到分;后8为则表示该对象在一定时间段内被访问的次数。如下:
image

当Redis需要淘汰数据时,它会从内存中随机抽取一定数量(默认为5个,可以通过 maxmemory-samples 参数设置)的键值对对象,然后比较它们的访问次数和访问时间戳,找出其中最小的那个,也就是最不经常使用且最早被访问的那个,将其从内存中删除。

例如,假设我们有以下键值对和频率计数器:

频率
A 1 3
B 2 2
C 3 1
D 4 4

如果我们要添加一个新的键值对(E,5),并且缓存已经满了,那么我们就需要淘汰一个旧的键值对。我们可以随机选择A,B,C中的一个,并且发现C的频率最低,为1,所以我们就淘汰C,并且添加E到缓存中,并且将E的频率设为1。这样,缓存中的数据就变成了:

频率
A 1 3
B 2 2
D 4 4
E 5 1

如何选择

在选择上,需要根据不同的适用场景选择不同策略,如下:

策略 特点 适用场景
noeviction 不删除任何数据,当内存不足时返回错误 数据都是永久有效的,且内存足够大
allkeys-lru 根据所有数据的访问时间来淘汰最久未访问的数据 数据都是永久有效的,且访问时间具有明显规律
volatile-lru 根据设置了过期时间的数据的访问时间来淘汰最久未访问的数据 数据都有过期时间,且访问时间具有明显规律
allkeys-random 随机淘汰所有类型的数据 数据都是永久有效的,且访问时间没有明显规律
volatile-random 随机淘汰设置了过期时间的数据 数据都有过期时间,且访问时间没有明显规律
volatile-ttl 根据设置了过期时间的数据的剩余生命周期来淘汰即将过期的数据 数据都有过期时间,且剩余生命周期具有明显规律
allkeys-lfu 根据所有数据的访问频率来淘汰最少访问的数据 数据都是永久有效的,且访问频率具有明显规律
volatile-lfu 根据设置了过期时间的数据的访问频率来淘汰最少访问的数据 数据都有过期时间,且访问频率具有明显规律

根据8种策略的特性,也从数据完整性缓存命中率淘汰效率这三个方面详细对比了,如下:

  • 数据完整性(是否会删除永久有效的数据)
    • noevictionvolatile-lruvolatile-lfuvolatile-random 都可以保证数据完整性,因为它们不会删除永久有效的数据
    • allkeys-lruallkeys-lfuallkeys-random系列的策略则会影响数据完整性,因为它们会无差别地删除所有类型的数据
  • 缓存命中率(是否能够尽可能保留最有价值的数据)
    • allkeys-lruvolatile-lru 策略可以提高缓存命中率,因为它们会根据数据的访问时间来淘汰数据
    • allkeys-randomvolatile-random 策略则会降低缓存命中率,因为它们会随机淘汰数据
    • allkeys-lfuvolatile-lfu 策略也可以提高缓存命中率,因为它们会根据数据的访问频率来淘汰数据
    • volatile-ttl 策略则会降低缓存命中率,因为它会根据数据的剩余生命周期来淘汰数据
  • 淘汰效率(是否能够快速地找到并删除目标数据)
    • allkeys-randomvolatile-random 策略可以提高执行效率,因为它们只需要随机选择一些数据进行删除
    • allkeys-lruvolatile-lru 策略则会降低执行效率,因为它们需要对所有或部分数据进行排序
    • allkeys-lfuvolatile-lfu 策略也会降低执行效率,因为它们需要对所有或部分数据进行计数和排序
    • volatile-ttl 策略则会提高执行效率,因为它只需要对设置了过期时间的数据进行排序

内存回收策略

Redis的过期键删除有两种方式,一种是定期删除,一种是惰性删除

惰性删除

Redis惰性删除是指当一个键过期后,它并不会立即被删除,而是在客户端尝试访问这个键时,Redis会检查这个键是否过期,如果过期了,就会删除这个键。惰性删除由db.c/expireIfNeeded函数实现。

惰性删除的优点是节约CPU性能,发现必须删除的时候才删除。缺点是内存压力很大,出现长期占用内存的数据。惰性删除是Redis的默认策略,它不需要额外的配置。

惰性删除的缺点是可能会导致过期键长时间占用内存,如果访问频率较低的键过期了,但没有被访问到,那么它们就不会被惰性删除,从而浪费内存空间。

为了解决这个问题,Redis还采用了定期删除和内存淘汰机制来配合惰性删除,以达到更好的清理效果

定期删除

Redis会将设置了过期时间的键放到一个独立的字典中,称为过期字典。Redis会对这个字典进行每秒10次(由配置文件中的hz参数控制)的过期扫描,过期扫描不会遍历字典中所有的键,而是采用了一种简单的贪心策略。该策略的删除逻辑如下:

  • 从过期字典中随机选择20个键
  • 删除其中已经过期的键
  • 如果超过25%的键被删除,则重复步骤1
  • 如果本次扫描耗时超过1毫秒,则停止扫描

这种策略可以在一定程度上保证过期键能够及时被删除,同时也避免了对CPU时间的过度占用。但是它也有一些缺点,比如可能会误删一些有效的键(因为随机性),或者漏删一些无效的键(因为限制了扫描时间)

因此,Redis还结合了惰性删除策略,即在每次访问一个键之前,都会检查这个键是否过期,如果过期就删除,然后返回空值。这样可以保证不返回过期的数据,也可以节省CPU时间,但是它可能会导致一些过期的键长期占用内存,如果这些键很少被访问或者一直不被访问,那么它们就永远不会被删除

配置文件说明

Redis内存淘汰、内存回收策略相关的配置文件如下:

# 内存淘汰策略
maxmemory-policy noeviction
# 抽取数量
maxmemory-samples 5
# 最大内存
maxmemory 100mb
# 内存淘汰韧性
maxmemory-eviction-tenacity 10
# 后台任务执行间隔
hz 10
# 是否开启动态间隔
dynamic-hz yes

配置文件说明:

  • maxmemory-policy:内存淘汰策略,可选值为noeviction、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu、volatile-lfu、volatile-ttl其中的一个
  • maxmemory:默认值为0,也就是不限制内存的使用。
  • maxmemory-samples:抽取数量,默认为5,如果设为10将非常接近真实的LRU,但需要更多CPU资源,如果设为3将非常快,但是非常不准确。
  • maxmemory-eviction-tenacity:内存淘汰韧性,默认为10
    • maxmemory-eviction-tenacity为0时,表示不进行任何淘汰,相当于noeviction策略
    • maxmemory-eviction-tenacity为10时,表示每次淘汰键的数量为内存使用量的0.1%,每秒最多淘汰10次
  • hz:Redis后台任务执行间隔,如超时关闭客户端连接、定期删除等。默认值为10。范围在 1 到 500 之间,官方建议不要超过100,大多数应使用默认值,并且只有在极低延迟的环境中才能设为 100
  • dynamic-hz:此配置用于动态调整hz的值,默认开启。如果有大量客户端连接进来时,会以hz的配置值将作为基线,将hz的实际值设置为hz的配置值的整数倍,用来节省CPU资源。

总结

总结如下:

  • Redis内存淘汰机制是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据
  • Redis提供了八种内存淘汰策略,分别是:
    • noeviction:不会淘汰任何键,达到内存限制后返回错误
    • allkeys-random:在所有键中,随机删除键
    • volatile-random:在设置了过期时间的键中,随机删除键
    • allkeys-lru:通过LRU算法淘汰最近最少使用的键,保留最近使用的键
    • volatile-lru:从设置了过期时间的键中,通过LRU算法淘汰最近最少使用的键
    • allkeys-lfu:从所有键中淘汰使用频率最少的键。从所有键中驱逐使用频率最少的键
    • volatile-lfu:从设置了过期时间的键中,通过LFU算法淘汰使用频率最少的键
    • volatile-ttl:从设置了过期时间的键中,淘汰马上就要过期的键
  • Redis内存回收机制是指在Redis中如何删除已经过期或者被淘汰的数据,释放内存空间
  • Redis提供了两种内存回收策略,分别是:
    • 定期删除:Redis会每隔一定时间(默认100ms)随机抽取一些设置了过期时间的键,检查它们是否过期,如果过期就删除。这种策略可以减少CPU开销,但可能会导致一些过期键占用内存
    • 惰性删除:Redis在客户端访问一个键时,会检查这个键是否过期,如果过期就删除。这种策略可以及时释放内存空间,但可能会增加CPU开销和延迟

与Redis内存兜底策略——内存淘汰及回收机制相似的内容:

Redis内存兜底策略——内存淘汰及回收机制

Redis内存兜底策略——内存淘汰及回收机制

[转帖]redis内存限制管理--maxmemory和maxmemory-policy

https://www.cnblogs.com/zgxblog/p/14198543.html 作为内存数据库,为了防止redis占用过多的内存对其他的应用程序造成影响,可以在redis.conf文件中通过设置maxmemory选项对redis所能够使用的最大内存做限制,并通过maxmemory_p

[转帖]Redis 内存优化在 vivo 的探索与实践

https://www.jianshu.com/p/0849b526f0f4 一、 背景 使用过 Redis 的同学应该都知道,它基于键值对(key-value)的内存数据库,所有数据存放在内存中,内存在 Redis 中扮演一个核心角色,所有的操作都是围绕它进行。 我们在实际维护过程中经常会被问到如

学习下Redis内存模型

redis,对于一个java开发工程师来讲,其实算不得什么复杂新奇的技术,但可能也很少人去深入了解学习它的底层的一些东西。下面将通过对内存统计、内存划分、存储细节、对象类型&内部编码这四个模块来学习学习redis的内存模型,手字笔录,潜心修行。

记一次线上Redis内存占用过高、大Key问题的排查

问题背景 在一个风和日丽的下午,公司某项目现场运维同学反馈,生产环境3个Redis的Sentinel集群节点内存占用都很高,达到了17GB的内存占用量。 稍加思索,应该是某些Key的Value数据体量过大,占用了过多的内存空间,我们在使用Redis的过程中,单个Value或者单个集合中的元素应该保证

[转帖]学习下Redis内存模型

https://baijiahao.baidu.com/s?id=1753357002197139126&wfr=spider&for=pc 前言 redis,对于一个java开发工程师来讲,其实算不得什么复杂新奇的技术,但可能也很少人去深入了解学习它的底层的一些东西。下面将通过对内存统计、内存划分

[转帖]学习下 Redis 内存模型

https://my.oschina.net/u/4090830/blog/5747217 前言 redis,对于一个 java 开发工程师来讲,其实算不得什么复杂新奇的技术,但可能也很少人去深入了解学习它的底层的一些东西。下面将通过对内存统计、内存划分、存储细节、对象类型 & 内部编码这四个模块来

[转帖]优雅的分析redis中的内存数据之RCT

https://www.zhihu.com/column/c_1087047428959608832?utm_id=0 目前我们EC Bigdata team 运维公司 4个 Redis 集群,300+ Redis 实例,500G+ 的内存数据,我们想要分析业务是否有误用,以提高资源利用率。伴随着业

[转帖]滥用Lua导致Redis内存无法被限制

https://axlgrep.github.io/tech/redis-memory-control.html 问题描述 最近发现线上某个Redis实例内存占用达到了17.21G, 但是该实例中实际的用户数据并不是很多(大概200Mb的样子), 此外mem_fragmentation_ratio达

[转帖]删除数据后的Redis内存占用率为什么还是很高?

https://zhuanlan.zhihu.com/p/490569316 有时候Redis明明做了数据删除,数据量已经不大了,但是使用top命令的时候,还会发现Redis占用了很多内存? PS:关于 Redis的高并发及高可用,到底该如何保证?可以参考下这个帖子:httss://http://z