JavaCV人脸识别三部曲之三:识别和预览

javacv,人脸识别,三部曲,之三,识别,预览 · 浏览次数 : 361

小编点评

**重点关注:** * **detectAndRecognizeService**对象中的方法,包括**init**、**convert**和**releaseOutputResource**。 * **CanvasFrame**的成员变量,包括**previewCanvas**。 * **Map**的**kindNameMap**,用于存储分类编号和名称。 **其他要注意:** * **模型加载:**加载**modelFileUrl**和**recognizeModelFilePath**的模型文件。 * **类映射:****kindNameMap**中包含**1**和**2**,用于映射分类编号到名字。 * **异常处理:**捕获**DetectAndRecognizeService**中的异常,并处理异常。 * **本地窗口显示:**在**output**方法中,显示检测结果的**Frame**。 * **视频循环:**在**releaseOutputResource**方法中,关闭**previewCanvas**和**CanvasFrame**。 * **异常处理:**捕获**DetectAndRecognizeService**中的异常,并处理异常。

正文

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

《JavaCV人脸识别三部曲》链接

  1. 《视频中的人脸保存为图片》
  2. 《训练》
  3. 《识别和预览》

本篇概览

  • 作为《JavaCV人脸识别三部曲》的终篇,今天咱们要开发一个实用的功能:有人出现在摄像头中时,应用程序在预览窗口标注出此人的身份,效果如下图所示:

  • 简单来说,本篇要做的事情如下:

  1. 理解重点概念:confidence
  2. 理解重点概念:threshold
  3. 编码
  4. 验证
  • 今天编写的代码,主要功能如下图所示:
    在这里插入图片描述

理解重点概念:confidence

  • confidence和threshold是OpenCV的人脸识别中非常重要的两个概念,咱们先把这两个概念搞清楚,再去编码就非常容易了

  • 假设,咱们用下面六张照片训练出包含两个类别的模型:
    在这里插入图片描述

  • 用一张新的照片去训练好的模型中做识别,如下图,识别结果有两部分内容:label和confidence
    在这里插入图片描述

  • 先说lable,这个好理解,与训练时的lable一致(回顾上一篇的代码,lable如下图红框所示),前面图中lable等于2,表示被判定为郭富城:
    在这里插入图片描述

  • 按照上面的说法,lable等于2就能确定照片中的人像是郭富城吗?

  • 当然不能!!!此时confidence字段就非常重要了,先看JavaCV源码中对confidence的解释,如下图红框所示,我的理解是:与lable值相关联的置信度,或者说这张脸是郭富城的可能性
    在这里插入图片描述

  • 如果理解为可能性,那么问题来了,这是个double型的值,这个值越大,表示可能性越大还是越小?

  • 上图并没有明说,但是那一句e.g. distance,让我想起了机器学习中的K-means,此时我脑海中的画面如下:
    在这里插入图片描述
    -若真如上图所示,那么显然confidence越小,是郭富城的可能性就越大了,接下来再去找一些权威的说法:

  • OpenCV的官方论坛有个帖子的说法如下图:代码中的confidence变量属于命名不当,其含义不是可信度,而是与模型中的类别的距离:
    在这里插入图片描述

  • 再看第二个解释,如下图红框,说得很清楚了,值越小,与模型中类别的相似度越高,0表示完全匹配:
    在这里插入图片描述

  • 再看一个Stack Overflow的解释
    在这里插入图片描述

  • 至此,相信您对confidence已经足够理解了,lable等于2,confidence=30.01,意思是:被识别照片与郭富城最相似,距离为30.01,距离越小,是郭富城的可能性越大

理解重点概念:threshold

  • 在聊threshold之前,咱们先看一个场景,还是刘德华郭富城的模型,这次咱们拿喜洋洋的照片给模型识别,识别结果如下:
    在这里插入图片描述
  • 显然,模型不会告诉你照片里是谁,只会告诉你:和郭富城的距离是3000.01
  • 看到这里,聪明的您可能会这么想:那我就写一段代码吧,识别结果的confidence如果太大(例如超过100),就判定用于识别的人不属于训练模型的任何一个类别
  • 上述功能,OpenCV已经帮咱们想到了,那就是:threshold,翻译过来即门限,如果咱们设置了threshold等于100,那么,一旦距离超过100,OpenCV的lable返回值就是-1
  • 理解了confidence和threshold,接下来可以写人脸识别的代码了,感谢咱们的充分准备,接下来是丝般顺滑的编码过程...

源码下载

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议
  • 这个git项目中有多个文件夹,本篇的源码在javacv-tutorials文件夹下,如下图红框所示:
    在这里插入图片描述
  • javacv-tutorials里面有多个子工程,《JavaCV人脸识别三部曲》系列的代码在simple-grab-push工程下:
    在这里插入图片描述

编码:人脸识别服务

  • 开始正式编码,今天咱们不会新建工程,而是继续使用《JavaCV的摄像头实战之一:基础》中创建的simple-grab-push工程
  • 先定义一个Bean类PredictRlt.java,用来保存识别结果(lable和confidence字段):
package com.bolingcavalry.grabpush.extend;

import lombok.Data;

@Data
public class PredictRlt {
    private int lable;
    private double confidence;
}
  • 然后把人脸识别有关的服务集中在RecognizeService.java中,方便主程序使用,代码如下,有几处要注意的地方稍后提到:
package com.bolingcavalry.grabpush.extend;

import com.bolingcavalry.grabpush.Constants;
import org.bytedeco.opencv.global.opencv_imgcodecs;
import org.bytedeco.opencv.opencv_core.Mat;
import org.bytedeco.opencv.opencv_core.Size;
import org.bytedeco.opencv.opencv_face.FaceRecognizer;
import org.bytedeco.opencv.opencv_face.FisherFaceRecognizer;
import static org.bytedeco.opencv.global.opencv_imgcodecs.IMREAD_GRAYSCALE;
import static org.bytedeco.opencv.global.opencv_imgproc.resize;

/**
 * @author willzhao
 * @version 1.0
 * @description 把人脸识别的服务集中在这里
 * @date 2021/12/12 21:32
 */
public class RecognizeService {

    private FaceRecognizer faceRecognizer;

    // 推理结果的标签
    private int[] plabel;

    // 推理结果的置信度
    private double[] pconfidence;

    // 推理结果
    private PredictRlt predictRlt;

    // 用于推理的图片尺寸,要和训练时的尺寸保持一致
    private Size size= new Size(Constants.RESIZE_WIDTH, Constants.RESIZE_HEIGHT);

    public RecognizeService(String modelPath) {
        plabel = new int[1];
        pconfidence = new double[1];
        predictRlt = new PredictRlt();
        
        // 识别类的实例化,与训练时相同
        faceRecognizer = FisherFaceRecognizer.create();
        // 加载的是训练时生成的模型
        faceRecognizer.read(modelPath);
        // 设置门限,这个可以根据您自身的情况不断调整
        faceRecognizer.setThreshold(Constants.MAX_CONFIDENCE);
    }

    /**
     * 将Mat实例给模型去推理
     * @param mat
     * @return
     */
    public PredictRlt predict(Mat mat) {
        // 调整到和训练一致的尺寸
        resize(mat, mat, size);

        boolean isFinish = false;

        try {
            // 推理(这一行可能抛出RuntimeException异常,因此要补货,否则会导致程序退出)
            faceRecognizer.predict(mat, plabel, pconfidence);
            isFinish = true;
        } catch (RuntimeException runtimeException) {
            runtimeException.printStackTrace();
        }

        // 如果发生过异常,就提前返回
        if (!isFinish) {
            return null;
        }

        // 将推理结果写入返回对象中
        predictRlt.setLable(plabel[0]);
        predictRlt.setConfidence(pconfidence[0]);

        return predictRlt;
    }
}
  • 上述代码有以下几处需要注意:
  1. 构造方法中,通过faceRecognizer.setThreshold设置门限,我在实际使用中发现50比较合适,您可以根据自己的情况不断调整
  2. predict方法中,用于识别的图片要用resize方法调整大小,尺寸要和训练时的尺寸一致
  3. 实测发现,在一张照片中出现多个人脸时,faceRecognizer.predict可能抛出RuntimeException异常,因此这里要捕获异常,避免程序崩溃退出

编码:检测和识别

package com.bolingcavalry.grabpush.extend;

import com.bolingcavalry.grabpush.Constants;
import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier;
import static org.bytedeco.opencv.global.opencv_core.CV_8UC1;
import static org.bytedeco.opencv.global.opencv_imgcodecs.imwrite;
import static org.bytedeco.opencv.global.opencv_imgproc.*;

/**
 * @author willzhao
 * @version 1.0
 * @description 检测工具的通用接口
 * @date 2021/12/5 10:57
 */
public interface DetectService {

    /**
     * 根据传入的MAT构造相同尺寸的MAT,存放灰度图片用于以后的检测
     * @param src 原始图片的MAT对象
     * @return 相同尺寸的灰度图片的MAT对象
     */
    static Mat buildGrayImage(Mat src) {
        return new Mat(src.rows(), src.cols(), CV_8UC1);
    }
    
    /**
     * 初始化操作,例如模型下载
     * @throws Exception
     */
    void init() throws Exception;

    /**
     * 得到原始帧,做识别,添加框选
     * @param frame
     * @return
     */
    Frame convert(Frame frame);

    /**
     * 释放资源
     */
    void releaseOutputResource();
}
  • 然后就是DetectService的实现类DetectAndRecognizeService .java,功能是用摄像头的一帧图片检测人脸,再拿检测到的人脸给RecognizeService做识别,完整代码如下,有几处要注意的地方稍后提到:
package com.bolingcavalry.grabpush.extend;

import lombok.extern.slf4j.Slf4j;
import org.bytedeco.javacpp.Loader;
import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier;

import java.io.File;
import java.net.URL;
import java.util.Map;

import static org.bytedeco.opencv.global.opencv_imgproc.*;

/**
 * @author willzhao
 * @version 1.0
 * @description 音频相关的服务
 * @date 2021/12/3 8:09
 */
@Slf4j
public class DetectAndRecognizeService implements DetectService {

    /**
     * 每一帧原始图片的对象
     */
    private Mat grabbedImage = null;

    /**
     * 原始图片对应的灰度图片对象
     */
    private Mat grayImage = null;

    /**
     * 分类器
     */
    private CascadeClassifier classifier;

    /**
     * 转换器
     */
    private OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();

    /**
     * 检测模型文件的下载地址
     */
    private String detectModelFileUrl;

    /**
     * 处理每一帧的服务
     */
    private RecognizeService recognizeService;

    /**
     * 为了显示的时候更加友好,给每个分类对应一个名称
     */
    private Map<Integer, String> kindNameMap;

    /**
     * 构造方法
     * @param detectModelFileUrl
     * @param recognizeModelFilePath
     * @param kindNameMap
     */
    public DetectAndRecognizeService(String detectModelFileUrl, String recognizeModelFilePath, Map<Integer, String> kindNameMap) {
        this.detectModelFileUrl = detectModelFileUrl;
        this.recognizeService = new RecognizeService(recognizeModelFilePath);
        this.kindNameMap = kindNameMap;
    }

    /**
     * 音频采样对象的初始化
     * @throws Exception
     */
    @Override
    public void init() throws Exception {
        // 下载模型文件
        URL url = new URL(detectModelFileUrl);

        File file = Loader.cacheResource(url);

        // 模型文件下载后的完整地址
        String classifierName = file.getAbsolutePath();

        // 根据模型文件实例化分类器
        classifier = new CascadeClassifier(classifierName);

        if (classifier == null) {
            log.error("Error loading classifier file [{}]", classifierName);
            System.exit(1);
        }
    }

    @Override
    public Frame convert(Frame frame) {
        // 由帧转为Mat
        grabbedImage = converter.convert(frame);

        // 灰度Mat,用于检测
        if (null==grayImage) {
            grayImage = DetectService.buildGrayImage(grabbedImage);
        }

        // 进行人脸识别,根据结果做处理得到预览窗口显示的帧
        return detectAndRecoginze(classifier, converter, frame, grabbedImage, grayImage, recognizeService, kindNameMap);
    }

    /**
     * 程序结束前,释放人脸识别的资源
     */
    @Override
    public void releaseOutputResource() {
        if (null!=grabbedImage) {
            grabbedImage.release();
        }

        if (null!=grayImage) {
            grayImage.release();
        }

        if (null==classifier) {
            classifier.close();
        }
    }

    /**
     * 检测图片,将检测结果用矩形标注在原始图片上
     * @param classifier 分类器
     * @param converter Frame和mat的转换器
     * @param rawFrame 原始视频帧
     * @param grabbedImage 原始视频帧对应的mat
     * @param grayImage 存放灰度图片的mat
     * @param kindNameMap 每个分类编号对应的名称
     * @return 标注了识别结果的视频帧
     */
    static Frame detectAndRecoginze(CascadeClassifier classifier,
                                    OpenCVFrameConverter.ToMat converter,
                                    Frame rawFrame,
                                    Mat grabbedImage,
                                    Mat grayImage,
                                    RecognizeService recognizeService,
                                    Map<Integer, String> kindNameMap) {

        // 当前图片转为灰度图片
        cvtColor(grabbedImage, grayImage, CV_BGR2GRAY);

        // 存放检测结果的容器
        RectVector objects = new RectVector();

        // 开始检测
        classifier.detectMultiScale(grayImage, objects);

        // 检测结果总数
        long total = objects.size();

        // 如果没有检测到结果,就用原始帧返回
        if (total<1) {
            return rawFrame;
        }

        PredictRlt predictRlt;
        int pos_x;
        int pos_y;
        int lable;
        double confidence;
        String content;

        // 如果有检测结果,就根据结果的数据构造矩形框,画在原图上
        for (long i = 0; i < total; i++) {
            Rect r = objects.get(i);
			
			// 核心代码,把检测到的人脸拿去识别	
            predictRlt = recognizeService.predict(new Mat(grayImage, r));

            // 如果返回为空,表示出现过异常,就执行下一个
            if (null==predictRlt) {
                System.out.println("return null");
                continue;
            }

            // 分类的编号(训练时只有1和2,这里只有有三个值,1和2与训练的分类一致,还有个-1表示没有匹配上)
            lable = predictRlt.getLable();
            // 与模型中的分类的距离,值越小表示相似度越高
            confidence = predictRlt.getConfidence();

            // 得到分类编号后,从map中取得名字,用来显示
            if (kindNameMap.containsKey(predictRlt.getLable())) {
                content = String.format("%s, confidence : %.4f", kindNameMap.get(lable), confidence);
            } else {
                // 取不到名字的时候,就显示unknown
                content = "unknown(" + predictRlt.getLable() + ")";
                System.out.println(content);
            }

            int x = r.x(), y = r.y(), w = r.width(), h = r.height();
            rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0);

            pos_x = Math.max(r.tl().x()-10, 0);
            pos_y = Math.max(r.tl().y()-10, 0);

            putText(grabbedImage, content, new Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.5, new Scalar(0,255,0,2.0));
        }

        // 释放检测结果资源
        objects.close();

        // 将标注过的图片转为帧,返回
        return converter.convert(grabbedImage);
    }
}
  • 上述代码有几处要注意:
  1. 重点关注detectAndRecoginze方法,这里面先调用classifier.detectMultiScale检测出当前照片所有的人脸,然后把每一张人脸交个recognizeService进行识别,
  2. 识别结果的lable是个int型的,看起来不够友好,因此从kindNameMap中根据lable找出对应的名称来
  3. 最终给每个头像添加矩形框,还在左上角添加识别结果,以及confidence的值
  4. 处理完毕后转为Frame对象返回,这样的帧显示在预览页面,效果就是视频中每个人被框选出来,并带有身份
  • 现在核心代码已经写完,需要再写一些代码来使用DetectAndRecognizeService

编码:运行框架

  • 《JavaCV的摄像头实战之一:基础》创建的simple-grab-push工程中已经准备好了父类AbstractCameraApplication,所以本篇继续使用该工程,创建子类实现那些抽象方法即可
  • 编码前先回顾父类的基础结构,如下图,粗体是父类定义的各个方法,红色块都是需要子类来实现抽象方法,所以接下来,咱们以本地窗口预览为目标实现这三个红色方法即可:
    在这里插入图片描述
  • 新建文件PreviewCameraWithIdentify.java,这是AbstractCameraApplication的子类,其代码很简单,接下来按上图顺序依次说明
  • 先定义CanvasFrame类型的成员变量previewCanvas,这是展示视频帧的本地窗口:
protected CanvasFrame previewCanvas
  • 把前面创建的DetectService作为成员变量,后面检测的时候会用到:
    /**
     * 检测工具接口
     */
    private DetectService detectService;
  • PreviewCameraWithIdentify的构造方法,接受DetectService的实例:
    /**
     * 不同的检测工具,可以通过构造方法传入
     * @param detectService
     */
    public PreviewCameraWithIdentify(DetectService detectService) {
        this.detectService = detectService;
    }
  • 然后是初始化操作,可见是previewCanvas的实例化和参数设置,还有检测、识别的初始化操作:
    @Override
    protected void initOutput() throws Exception {
        previewCanvas = new CanvasFrame("摄像头预览和身份识别", CanvasFrame.getDefaultGamma() / grabber.getGamma());
        previewCanvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        previewCanvas.setAlwaysOnTop(true);

        // 检测服务的初始化操作
        detectService.init();
    }
  • 接下来是output方法,定义了拿到每一帧视频数据后做什么事情,这里调用了detectService.convert检测人脸并保存图片,然后在本地窗口显示:
    @Override
    protected void output(Frame frame) {
        // 原始帧先交给检测服务处理,这个处理包括物体检测,再将检测结果标注在原始图片上,
        // 然后转换为帧返回
        Frame detectedFrame = detectService.convert(frame);
        // 预览窗口上显示的帧是标注了检测结果的帧
        previewCanvas.showImage(detectedFrame);
    }
  • 最后是处理视频的循环结束后,程序退出前要做的事情,先关闭本地窗口,再释放检测服务的资源:
    @Override
    protected void releaseOutputResource() {
        if (null!= previewCanvas) {
            previewCanvas.dispose();
        }

        // 检测工具也要释放资源
        detectService.releaseOutputResource();
    }
  • 由于检测有些耗时,所以两帧之间的间隔时间要低于普通预览:
    @Override
    protected int getInterval() {
        return super.getInterval()/8;
    }
  • 至此,功能已开发完成,再写上main方法,代码如下,有几处要注意的地方稍后说明:
    public static void main(String[] args) {
        String modelFileUrl = "https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml";
        String recognizeModelFilePath = "E:\\temp\\202112\\18\\001\\faceRecognizer.xml";

        // 这里分类编号的身份的对应关系,和之前训练时候的设定要保持一致
        Map<Integer, String> kindNameMap = new HashMap();
        kindNameMap.put(1, "Man");
        kindNameMap.put(2, "Woman");

        // 检测服务
        DetectService detectService = new DetectAndRecognizeService(modelFileUrl,recognizeModelFilePath, kindNameMap);

        // 开始检测
        new PreviewCameraWithIdentify(detectService).action(1000);
    }
  • 上述main方法中,有以下几处需要注意:
  1. kindNameMap是个HashMap,里面放这每个分类编号对应的名称,我训练的模型中包含了两位群众演员的头像,给他们分别起名ManWoman
  2. modelFileUrl是人脸检测时用到的模型地址
  3. recognizeModelFilePath是人脸识别时用到的模型地址,这个模型是《JavaCV人脸识别三部曲之二:训练》一文中训练的模型
  • 至此,人脸识别的代码已经写完,运行main方法,请几位群众演员来到摄像头前面,验证效果吧

验证

  • 程序运行起来后,请名为Man的群众演员A站在摄像头前面,如下图,识别成功:
    在这里插入图片描述

  • 接下来,请名为Woman的群众演员B过来,和群众演员A同框,如下图,同时识别成功,不过偶尔会识别错误,提示成unknown(-1)

  • 再请一个没有参与训练的小群众演员过来,与A同框,此刻的识别也是准确的,小演员被标注为unknown(-1)

  • 去看程序的控制台,发现FaceRecognizer.predict方法会抛出异常,幸好程序捕获了异常,不会把整个进程中断退出:
    在这里插入图片描述

  • 至此,整个《JavaCV人脸识别三部曲》全部完成,如果您是位java程序员,正在寻找人脸识别相关的方案,希望本系列能给您一些参考

  • 另外《JavaCV人脸识别三部曲》是《JavaCV的摄像头实战》系列的分支,作为主干的《JavaCV的摄像头实战》依然在持续更新中,欣宸原创会继续与您一路相伴,学习、实战、提升

欢迎关注博客园:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴...

与JavaCV人脸识别三部曲之三:识别和预览相似的内容:

JavaCV人脸识别三部曲之三:识别和预览

借助JavaCV,识别出摄像头内的人员身份,并展示在实时视频中

JavaCV人脸识别三部曲之二:训练

用分好类的人脸照片做训练,可以得到模型文件,该文件用于新照片的识别

JavaCV人脸识别三部曲之一:视频中的人脸保存为图片

先介绍人脸识别,再用JavaCV,将摄像头中的人脸提取出来保存为小图片,用于训练

JavaCV的摄像头实战之八:人脸检测

在预览摄像头内容的时候增加识别功能,实时框选出人脸

JavaCV的摄像头实战之十四:口罩检测

使用JavaCV与百度AI开放平台,实现对摄像头内人脸的口罩检测

JavaCV的摄像头实战之十二:性别检测

实现性别检测并在预览窗口实时展现

JavaCV的摄像头实战之十三:年龄检测

在前面《性别检测》的基础上,修改少量代码,即可实现年龄检测和实时预览的效果

为什么StampedLock会导致CPU100%?

StampedLock 是 Java 8 引入的一种高级的锁机制,它位于 java.util.concurrent.locks 包中。与传统的读写锁(ReentrantReadWriteLock)相比,StampedLock 提供了更灵活和更高性能的锁解决方案,尤其适用于读操作远多于写操作的场景。

说说XXLJob分片任务实现原理?

XXL Job 是一个开源的分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展的分布式任务调度框架。 这两天咱们开发的 AI Cloud 项目中,也使用到了 XXL Job 来执行分布式任务的调度,可以看出它的部署和使用虽然步骤很多,但用起来还是很简单的。 因为其本身为 Spri

说说RabbitMQ延迟队列实现原理?

使用 RabbitMQ 和 RocketMQ 的人是幸运的,因为这两个 MQ 自身提供了延迟队列的实现,不像用 Kafka 的同学那么苦逼,还要自己实现延迟队列。当然,这都是题外话,今天咱们重点来聊聊 RabbitMQ 延迟队列的实现原理,以及 RabbitMQ 实现延迟队列的优缺点有哪些? 很多人