langchain中的LLM模型使用介绍

langchain,llm,模型,使用,介绍 · 浏览次数 : 383

小编点评

**简介** **大语言模型**是一种用于构建自然语言处理模型的平台。langchain提供两种大语言模型基础应用:** 1. **文本完成**:输入文本,输出文本。 2. **聊天机器人**模式,支持与用户进行聊天。 **文本完成** * 采用**LLM**基础,可以处理单一文本问题。 * 每个问题都是最新的,并以最简短的文本输出。 * 常用于知识库和问答系统。 **聊天机器人** * 支持与用户进行多轮对话。 * 通过保存上下文信息,提供更自然的行为。 * 通常用于娱乐、聊天和问答。 **LLM基础** * **Large Language Models (LLMs)** 是人工智能研究领域的重大突破。 * 它们是通过人工训练大型文本数据集来创建的。 * LLM 是一种基于神经网络的语言模型。 **一些支持的 LLM 模型** * **OpenAI** * **Azure OpenAI** * **AmazonAPI** * **Hugging Face Hub** **其他功能** * **异步调用**:可以并行执行多个 LLM 操作。 * **缓存**:可以存储和复用之前计算的结果。 * **流式处理**:可以处理文本以实时返回。

正文

简介

构建在大语言模型基础上的应用通常有两种,第一种叫做text completion,也就是一问一答的模式,输入是text,输出也是text。这种模型下应用并不会记忆之前的问题内容,每一个问题都是最新的。通常用来做知识库。

还有一种是类似聊天机器人这种会话模式,也叫Chat models。这种模式下输入是一个Chat Messages的列表。从而可以保存上下文信息,让模型的回复更加真实。

实际上Chat models的底层还是LLMs,只不过在调用方式上有些变化。

简单使用LLMs

什么是LLMs呢?LLMs是Large Language Models的简称,也就是我们常说的大语言模型。

对于langchain来说,它本身并不提供大语言模型,它只是一个中间的粘合层,提供了统一的接口,方便我们对接底层的各种LLMs模型。

langchain除了可以对接OpenAI之外,还可以对接Cohere, Hugging Face等其他的大语言模型。

比如下面是openAI的使用:

from langchain.llms import OpenAI

llm = OpenAI(openai_api_key="...")

接下来就可以调用llm的方法来进行text completion了。

一般来说有两种方式。第一种方式就是直接输出:

llm("给我写首诗")

还有一种方式调用他的generate方法:

llm_result = llm.generate(["给我唱首歌", "给我写首诗"])

这种方式可以传入一个数组,用来生成比较复杂的结果。

langchain支持的LLM

现在大语言模型可谓是蓬勃发展,一不留神就可能出一个新的大语言模型。

就目前而言,基本的国外主流模型langchain都是支持的。

比如:openai,azure openai,AmazonAPI,Hugging Face Hub等等。数目繁多,功能齐全,你想要的他全都有,你没想到的他也有。

那么有小伙伴可能要问题了,langchain支不支持国产的大语言模型呢?

答案是肯定的,但并不是直接的。

如果你发现langchain并没有你想要的llm,那么你可以尝试进行自定义。

langchain为我们提供了一个类叫做LLM,我们只需要继承这个LLM即可:

class LLM(BaseLLM):

    @abstractmethod
    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
    ) -> str:
        """Run the LLM on the given prompt and input."""

其中,唯一一个必须要实现的方法就是_call,这个方法传入一个字符串和一些可选的stop word,然后返回LLM的输出即可。

另外还可以实现一个_identifying_params方法,用来输出自定义LLM的一些参数信息。

大家可以自行尝试和接入不同的LLM模型。

一些特殊的LLM

很多时候调用LLM是需要收费的,如果我们在开发的过程中也要不断的消耗token肯定是得不偿失。

所以langchain为了给我们省钱,提供了一个FakeLLM来使用。

顾名思义,FakeLLM就是可以手动来mock一些LLM的回答,方便测试。

from langchain.llms.fake import FakeListLLM

responses = ["窗前明月光\n低头鞋两双"]
llm = FakeListLLM(responses=responses)

print(llm("给我写首诗"))

上面的输出结果如下:

窗前明月光
低头鞋两双

langchain中还有一个和FakeLLM类似的叫做HumanInputLLM。

这个LLM可以打印出给用户的prompt,并且将用户的输入作为输出返回给用户,大家可以自行体验。

LLM的高级用法

除了正常的LLM调用之外,langchain还提供了一些LLM的高级用法。

异步调用

比如异步调用LLM。当然目前只支持OpenAI, PromptLayerOpenAI, ChatOpenAI 和 Anthropic这几个LLM。其他的对LLM的支持貌似正在开发中。

异步方法也很简单,主要是调用llm的agenerate方法,比如下面这样:

async def async_generate(llm):
    resp = await llm.agenerate(["Hello, how are you?"])
    print(resp.generations[0][0].text)

缓存功能

另外,对于一些重复的请求来说,langchain还提供了缓存功能,这样可以重复的请求就不需要再发送到LLM去了,给我们节约了时间和金钱,非常好用。

langchain提供的cache也有很多种,比如InMemoryCache,FullLLMCache,SQLAlchemyCache,SQLiteCache和RedisCache等等。

我们以InMemoryCache为例,看看是怎么使用的:

from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()

# 第一次没有使用缓存
llm.predict("Tell me a joke")
# 第二次使用了缓存
llm.predict("Tell me a joke")

使用起来很简单,只需要添加一行llm_cache即可。

如果你使用其他的cache,除了构造函数不同之外,其他的都是类似的。

保存LLM配置

有时候我们配置好了LLM之外,还可以把LLM相关的参数以文本的形式存储起来。

保存llm到文件:

llm.save("llm.json")

加载llm:

llm = load_llm("llm.json")

流式处理

LLM的速度是一个硬伤,由于返回整个响应的速度太慢了,所以推出了流式响应。只要有response返回,就传输给用户。并不需要等待所有内容都获得之后再处理。这样对用户的体验是最好的。

目前langchain只支持OpenAI,ChatOpenAI和ChatAnthropic。

要实现这个流式处理, langchain提供了BaseCallbackHandler,我们只需要继承这个类,实现on_llm_new_token这个方法即可。

当然langchain已经给我们提供了一个实现好的类叫做:StreamingStdOutCallbackHandler。下面是他的实现:

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        sys.stdout.write(token)
        sys.stdout.flush()

使用的时候,只需要在构建llm的是传入对应的callback即可:

from langchain.llms import OpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler


llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = llm("给我写首诗")

统计token数目

这个统计token使用数目的功能目前只能在openai使用。

from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback

llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2)

with get_openai_callback() as cb:
    result = llm("T给我写首诗")
    print(cb)

总结

LLM是大语言模型最基础的模式,chat模式的底层就是基于LLM实现的。后续我们会详细介绍chat模式,尽请期待。

与langchain中的LLM模型使用介绍 相似的内容:

langchain中的LLM模型使用介绍

# 简介 构建在大语言模型基础上的应用通常有两种,第一种叫做text completion,也就是一问一答的模式,输入是text,输出也是text。这种模型下应用并不会记忆之前的问题内容,每一个问题都是最新的。通常用来做知识库。 还有一种是类似聊天机器人这种会话模式,也叫Chat models。这种

Langchain-Chatchat项目:3-Langchain计算器工具Agent思路和实现

本文主要讨论Langchain-Chatchat项目中自定义Agent问答的思路和实现。以"计算器工具"为例,简单理解就是通过LLM识别应该使用的工具类型,然后交给相应的工具(也是LLM模型)来解决问题。一个LLM模型可以充当不同的角色,要把结构化的Prompt模板写好,充分利用LLM的Zero/O

拆解LangChain的大模型记忆方案

之前我们聊过如何使用LangChain给LLM(大模型)装上记忆,里面提到对话链ConversationChain和MessagesPlaceholder,可以简化安装记忆的流程。下文来拆解基于LangChain的大模型记忆方案。

把langchain跑起来的3个方法

使用LangChain开发LLM应用时,需要机器进行GLM部署,好多同学第一步就被劝退了,那么如何绕过这个步骤先学习LLM模型的应用,对Langchain进行快速上手?本片讲解3个把LangChain跑起来的方法,如有错误欢迎纠正。

LangChain让LLM带上记忆

最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangChain,快速为 LLM 添加记忆能力,提升对话体验。

Langchain-Chatchat项目:1-整体介绍

基于Langchain与ChatGLM等语言模型的本地知识库问答应用实现。项目中默认LLM模型改为THUDM/chatglm2-6b[2],默认Embedding模型改为moka-ai/m3e-base[3]。 一.项目介绍 1.实现原理 本项目实现原理如下图所示,过程包括加载文件->读取文本->文

Langchain-Chatchat项目:2.1-通过GPT2模型来检索NebulaGraph

在官方例子中给出了通过chain = NebulaGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph, verbose=True)来检索NebulaGraph图数据库。本文介绍了通过GPT2替换ChatOpenAI的思路和实现,暂

LangGraph实战

1.概述 前段时间LangChain发布了LangGraph,它引起了很多关注。LangGraph 的主要优势在于它能够实现循环工作流,这对于在 LLM 应用程序中模拟类似代理的行为至关重要。本篇博客,笔者将从介绍 LangGraph 的功能和用例,强调它与典型的有向无环图 (DAG)工作流的区别,

Llama2-Chinese项目:7-外延能力LangChain集成

本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。 1.调用Llama2类 针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下

LangChain和Hub的前世今生

作为LLM(大模型)开发框架的宠儿,LangChain在短短几年内迅速崛起,成为开发者们不可或缺的工具。本文将带你探讨LangChain和LangChainHub的发展历程。