MySql中执行计划如何来的——Optimizer Trace

mysql,执行,计划,如何,optimizer,trace · 浏览次数 : 283

小编点评

**步骤** **prepare阶段** * 创建TempTable * 写入数据 * 创建 tmp_table_info * 获取数据长度 **optimize阶段** * 计算字段大小 * 计算每个表中所有字段的总大小 * 计算每个表中所有字段的平均大小 * 计算每个表中所有字段的估计大小 **execute阶段** * 执行 select * 使用 EXPLAIN 语句显示执行方案的成本耗费 **优化** * 通过优化阶段的rows_estimation过程,降低查询的成本 * 通过考虑tmp_table_info中字段大小和字段数量进行优化 * 通过使用EXPLAIN语句分析执行方案的成本耗费,选择最优化的方案 **结果** * 查询的成本最低 * 查询的效率最高 * 优化阶段对查询的成本影响最大

正文

作者:京东物流 籍磊

1.前言

当谈到MySQL的执行计划时,会有很多同学想:“我就觉得使用其他的执行方案比EXPLAIN语句输出的方案强,凭什么优化器做的决定与我得不一样?”。这个问题在MySQL 5.6之前或许自己很难解决,但是现在MySQL5.6及更高的版本中引入了Optimizer Trace。

2.optimizer_trace开启方式及表结构

当下面这行代码执行的时候会将会使用户能够方便地查看优化器生成执行计划的整个过程。

SET SESSION optimizer_trace=”enabled=on”;

optimizer_trace的开关默认是关闭的,我们可以使用下行代码查看optimizer_trace状态。

SHOW variables LIKE'optimizer_trace';

其中one_line值是用来控制输出格式的,如果值为on,那所有的信息会在同一行中展示(这样并不便于我们阅读),默认为off。当我们的optimizer_trace的enabled为on时,输入想要查看优化过程的查询语句,在该语句执行完之后,就可以到information_schema数据库下的optimizer_trace表中查看详细的执行计划生成过程,当然也可以直接对想要的查询语句使用EXPLAIN。

optimizer_trace表有四列,每列注释我补充在下方create语句中:

CREATE TEMPORARY TABLE `OPTIMIZER_TRACE` (
  `QUERY` longtext NOT NULL COMMENT '我们输入的查询语句',
  `TRACE` longtext NOT NULL COMMENT '优化过程的json文本',
  `MISSING_BYTES_BEYOND_MAX_MEM_SIZE` int(20) NOT NULL DEFAULT '0' COMMENT '执行计划生成
的过程中产生的超出字数限制的文本数',
  `INSUFFICIENT_PRIVILEGES` tinyint(1) NOT NULL DEFAULT '0' COMMENT '是否有权限查看执行
计划的生成过程,0有权限,1无权限'
) ENGINE=InnoDB DEFAULT CHARSET=utf8

3.optimizer_trace实践

我们现在根据一个例子来看看optimizer_trace的实践。

explain select * from ship_data.check_table 
where 
outbound_no ='ESL48400163536608' and 
yn=0 and 
update_user ='jilei18';
SELECT * FROM information_schema.OPTIMIZER_TRACE;

上述sql的执行计划如下:

OPTIMIZER_TRACE表中的信息,这里可以注意到MISSING_BYTES_BEYOND_MAX_MEM_SIZE的值为1023,说明TRACE中并没有显示出全部的优化过程:

Query列中的文本是我们执行的Sql语句:

/* ApplicationName=DBeaver 21.1.3 - SQLEditor <Script-2.sql> */ explain select * from ship_data.check_table 
where 
outbound_no ='ESL48400163536608' and 
yn=0 and 
update_user ='jilei18'

TRACE列是优化的具体过程,其中分析过程需要注意的点在下面代码框中使用#注释的形式给出:

{
  "steps": [
    {
      "join_preparation": { #prepare阶段
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `ship_data`.`check_table`.`m_id` AS `m_id`,`ship_data`.`check_table`.`wave_no` AS `wave_no`,`ship_data`.`check_table`.`wave_type` AS `wave_type`,`ship_data`.`check_table`.`outbound_no` AS `outbound_no`,`ship_data`.`check_table`.`outbound_type` AS `outbound_type`,`ship_data`.`check_table`.`check_type` AS `check_type`,`ship_data`.`check_table`.`production_mode` AS `production_mode`,`ship_data`.`check_table`.`sku_qty` AS `sku_qty`,`ship_data`.`check_table`.`total_qty` AS `total_qty`,`ship_data`.`check_table`.`uncheck_qty` AS `uncheck_qty`,`ship_data`.`check_table`.`container_no` AS `container_no`,`ship_data`.`check_table`.`production_wave_no` AS `production_wave_no`,`ship_data`.`check_table`.`carriage_no` AS `carriage_no`,`ship_data`.`check_table`.`realcarriage_no` AS `realcarriage_no`,`ship_data`.`check_table`.`case_no` AS `case_no`,`ship_data`.`check_table`.`rebinwall_no` AS `rebinwall_no`,`ship_data`.`check_table`.`locate_sum_qty` AS `locate_sum_qty`,`ship_data`.`check_table`.`check_differ_qty_small` AS `check_differ_qty_small`,`ship_data`.`check_table`.`supplier_code` AS `supplier_code`,`ship_data`.`check_table`.`supplier_name` AS `supplier_name`,`ship_data`.`check_table`.`broke_type` AS `broke_type`,`ship_data`.`check_table`.`outbound_level` AS `outbound_level`,`ship_data`.`check_table`.`outbound_time` AS `outbound_time`,`ship_data`.`check_table`.`sort_entry` AS `sort_entry`,`ship_data`.`check_table`.`end_time` AS `end_time`,`ship_data`.`check_table`.`end_time_attr` AS `end_time_attr`,`ship_data`.`check_table`.`send_address` AS `send_address`,`ship_data`.`check_table`.`site_no` AS `site_no`,`ship_data`.`check_table`.`site_name` AS `site_name`,`ship_data`.`check_table`.`sort_slot_no` AS `sort_slot_no`,`ship_data`.`check_table`.`valueadd_flag` AS `valueadd_flag`,`ship_data`.`check_table`.`package_qty` AS `package_qty`,`ship_data`.`check_table`.`send_type` AS `send_type`,`ship_data`.`check_table`.`resource` AS `resource`,`ship_data`.`check_table`.`platform_no` AS `platform_no`,`ship_data`.`check_table`.`pack_table_no` AS `pack_table_no`,`ship_data`.`check_table`.`total_weight` AS `total_weight`,`ship_data`.`check_table`.`total_volume` AS `total_volume`,`ship_data`.`check_table`.`status` AS `status`,`ship_data`.`check_table`.`status_lock` AS `status_lock`,`ship_data`.`check_table`.`cancel_order_status` AS `cancel_order_status`,`ship_data`.`check_table`.`is_shortage` AS `is_shortage`,`ship_data`.`check_table`.`check_num` AS `check_num`,`ship_data`.`check_table`.`multiple_check` AS `multiple_check`,`ship_data`.`check_table`.`org_no` AS `org_no`,`ship_data`.`check_table`.`distribute_no` AS `distribute_no`,`ship_data`.`check_table`.`warehouse_no` AS `warehouse_no`,`ship_data`.`check_table`.`create_user` AS `create_user`,`ship_data`.`check_table`.`create_time` AS `create_time`,`ship_data`.`check_table`.`update_user` AS `update_user`,`ship_data`.`check_table`.`update_time` AS `update_time`,`ship_data`.`check_table`.`yn` AS `yn`,`ship_data`.`check_table`.`OWNER_NO` AS `OWNER_NO`,`ship_data`.`check_table`.`OWNER_NAME` AS `OWNER_NAME`,`ship_data`.`check_table`.`batch_no` AS `batch_no`,`ship_data`.`check_table`.`check_business_tag` AS `check_business_tag`,`ship_data`.`check_table`.`group_no` AS `group_no`,`ship_data`.`check_table`.`TRIAL_PRODUCT_FLAG` AS `TRIAL_PRODUCT_FLAG`,`ship_data`.`check_table`.`CHECK_MODE` AS `CHECK_MODE`,`ship_data`.`check_table`.`check_differ_qty_total` AS `check_differ_qty_total`,`ship_data`.`check_table`.`check_differ_qty_medium` AS `check_differ_qty_medium`,`ship_data`.`check_table`.`picking_finished` AS `picking_finished`,`ship_data`.`check_table`.`cell_no` AS `cell_no`,`ship_data`.`check_table`.`rebin_no` AS `rebin_no`,`ship_data`.`check_table`.`status_picking` AS `status_picking`,`ship_data`.`check_table`.`status_picking_small` AS `status_picking_small`,`ship_data`.`check_table`.`status_picking_medium` AS `status_picking_medium`,`ship_data`.`check_table`.`status_small` AS `status_small`,`ship_data`.`check_table`.`status_medium` AS `status_medium`,`ship_data`.`check_table`.`picking_time` AS `picking_time`,`ship_data`.`check_table`.`isv_outstore_no` AS `isv_outstore_no`,`ship_data`.`check_table`.`pick_type` AS `pick_type`,`ship_data`.`check_table`.`sf_ship_no` AS `sf_ship_no`,`ship_data`.`check_table`.`isCollectDeliveryInfo` AS `isCollectDeliveryInfo`,`ship_data`.`check_table`.`expect_package_qty` AS `expect_package_qty`,`ship_data`.`check_table`.`print_shopping_flag` AS `print_shopping_flag`,`ship_data`.`check_table`.`product_mode_flag` AS `product_mode_flag`,`ship_data`.`check_table`.`schedulebill_code` AS `schedulebill_code`,`ship_data`.`check_table`.`uppershelf_time` AS `uppershelf_time`,`ship_data`.`check_table`.`mixedorder_type` AS `mixedorder_type`,`ship_data`.`check_table`.`child_order_flag` AS `child_order_flag`,`ship_data`.`check_table`.`inbound_no` AS `inbound_no`,`ship_data`.`check_table`.`production_order_no` AS `production_order_no`,`ship_data`.`check_table`.`check_user` AS `check_user`,`ship_data`.`check_table`.`check_finish_time` AS `check_finish_time`,`ship_data`.`check_table`.`check_style` AS `check_style` from `ship_data`.`check_table` where ((`ship_data`.`check_table`.`outbound_no` = 'ESL48400163536608') and (`ship_data`.`check_table`.`yn` = 0) and (`ship_data`.`check_table`.`update_user` = 'jilei18'))"
          }
        ]
      }
    },
    {
      "join_optimization": { #optimize阶段
        "select#": 1,
        "steps": [
          {
            "condition_processing": {#处理搜索条件
              "condition": "WHERE",
              "original_condition": "((`ship_data`.`check_table`.`outbound_no` = 'ESL48400163536608') and (`ship_data`.`check_table`.`yn` = 0) and (`ship_data`.`check_table`.`update_user` = 'jilei18'))",
              "steps": [
                {
                  "transformation": "equality_propagation",#处理等值转换
                  "resulting_condition": "((`ship_data`.`check_table`.`outbound_no` = 'ESL48400163536608') and (`ship_data`.`check_table`.`update_user` = 'jilei18') and multiple equal(0, `ship_data`.`check_table`.`yn`))"
                },
                {
                  "transformation": "constant_propagation",#常量传递转换
                  "resulting_condition": "((`ship_data`.`check_table`.`outbound_no` = 'ESL48400163536608') and (`ship_data`.`check_table`.`update_user` = 'jilei18') and multiple equal(0, `ship_data`.`check_table`.`yn`))"
                },
                {
                  "transformation": "trivial_condition_removal",#去除没用的条件
                  "resulting_condition": "((`ship_data`.`check_table`.`outbound_no` = 'ESL48400163536608') and (`ship_data`.`check_table`.`update_user` = 'jilei18') and multiple equal(0, `ship_data`.`check_table`.`yn`))"
                }
              ]
            }
          },
          {
            "substitute_generated_columns": {#去除虚拟生成的列
            }
          },
          {
            "table_dependencies": [#表的依赖信息
              {
                "table": "`ship_data`.`check_table`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ]
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [#列出所有可用的ref类型的索引
              {
                "table": "`ship_data`.`check_table`",
                "field": "outbound_no",
                "equals": "'ESL48400163536608'",
                "null_rejecting": false
              }
            ]
          },
          {
            "rows_estimation": [#预估不同单表访问方法的访问成本
              {
                "table": "`ship_data`.`check_table`",
                "range_analysis": {
                  "table_scan": {#全表扫描的行数及成本
                    "rows": 79745,
                    "cost": 19127
                  },
                  "potential_range_indexes": [#分析可能使用的索引,此处就是执行计划中的possiable_keys
                    {
                      "index": "PRIMARY",#主键不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "UK_batch_production",#UK_batch_production索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_update_time",#idx_update_time索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "IDX_status",#IDX_status索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_case_no",#idx_case_no索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_outbound_time",#idx_outbound_time索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_outboundno",#idx_outboundno索引可用
                      "usable": true,
                      "key_parts": [
                        "outbound_no",
                        "m_id"
                      ]
                    },
                    {
                      "index": "idx_wave_no",#idx_wave_no索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_cancel_order_status",#idx_cancel_order_status索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_production_wave_no",#idx_production_wave_no索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_schedulebillcode_uppershelftime",#idx_schedulebillcode_uppershelftime索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_production_orderno",#idx_production_orderno索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_end_time_attr",#idx_end_time_attr索引不可用
                      "usable": false,
                      "cause": "not_applicable"
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  },
                  "analyzing_range_alternatives": {#分析可能使用的索引的成本
                    "range_scan_alternatives": [
                      {
                        "index": "idx_outboundno",#使用idx_outboundno索引的成本
                        "ranges": [
                          "ESL48400163536608 <= outbound_no <= ESL48400163536608"
                        ],
                        "index_dives_for_eq_ranges": true,#是否使用index_dives
                        "rowid_ordered": true,#使用该索引获取的记录是否按照主键排序
                        "using_mrr": false,#是否使用mrr
                        "index_only": false,#是否是覆盖索引
                        "rows": 1,#使用该索引获取的记录条数
                        "cost": 2.21,#使用该索引花费的成本
                        "chosen": true#是否选择该索引
                        "cause": "cost"#该字段为作者添加,当有索引未被使用时会标记未被使用的原因,cost为成本不合理未被选用
                      }
                    ],
                    "analyzing_roworder_intersect": {#分析使用索引合并的成本
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  },
                  "chosen_range_access_summary": {#对于上述单表查询check_table最优的方法
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_outboundno",
                      "rows": 1,
                      "ranges": [
                        "ESL48400163536608 <= outbound_no <= ESL48400163536608"
                      ]
                    },
                    "rows_for_plan": 1,
                    "cost_for_plan": 2.21,
                    "chosen": true
                  }
                }
              }
            ]
          },
          {
            "considered_execution_plans": [#分析各种可能的执行计划
              {
                "plan_prefix": [
                ],
                "table": "`ship_data`.`check_table`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type": "ref",
                      "index": "idx_outboundno",
                      "rows": 1,
                      "cost": 1.2,
                      "chosen": true
                    },
                    {
                      "access_type": "range",
                      "range_details": {
                        "used_index": "idx_outboundno"
                      },
                      "chosen": false,
                      "cause": "heuristic_index_cheaper"
                    }
                  ]
                },
                "condition_filtering_pct": 5,#下面的数据来自官网示例,作者示例中超出长度的文本无法获取到
                "rows_for_plan": 0.05,
                                        "cost_for_plan": 8.55,
                                        "chosen": true
                                    }
                                ] /* rest_of_plan */
                            }
                        ] /* considered_execution_plans */
                    },
                    {
                        "attaching_conditions_to_tables": {#尝试给查询添加一些其他的查询条件
                            "original_condition": "((`alias2`.`pk` = `alias1`.`col_int_key`) and (0 <> `alias1`.`pk`))",
                            "attached_conditions_computation": [] /* attached_conditions_computation */,
                            "attached_conditions_summary": [
                                {
                                    "table": "`t1` `alias1`",
                                    "attached": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))"
                                },
                                {
                                    "table": "`t2` `alias2`",
                                    "attached": "(`alias2`.`pk` = `alias1`.`col_int_key`)"
                                }
                            ] /* attached_conditions_summary */
                        } /* attaching_conditions_to_tables */
                    },
                    {
                        "optimizing_distinct_group_by_order_by": {
                            "simplifying_order_by": {
                                "original_clause": "`alias1`.`col_int_key`,`alias2`.`pk`",
                                "items": [
                                    {
                                        "item": "`alias1`.`col_int_key`"
                                    },
                                    {
                                        "item": "`alias2`.`pk`",
                                        "eq_ref_to_preceding_items": true
                                    }
                                ] /* items */,
                                "resulting_clause_is_simple": true,
                                "resulting_clause": "`alias1`.`col_int_key`"
                            } /* simplifying_order_by */,
                            "simplifying_group_by": {
                                "original_clause": "`field2`",
                                "items": [
                                    {
                                        "item": "`alias2`.`pk`"
                                    }
                                ] /* items */,
                                "resulting_clause_is_simple": false,
                                "resulting_clause": "`field2`"
                            } /* simplifying_group_by */
                        } /* optimizing_distinct_group_by_order_by */
                    },
                    {
                        "finalizing_table_conditions": [
                            {
                                "table": "`t1` `alias1`",
                                "original_table_condition": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))",
                                "final_table_condition   ": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))"
                            },
                            {
                                "table": "`t2` `alias2`",
                                "original_table_condition": "(`alias2`.`pk` = `alias1`.`col_int_key`)",
                                "final_table_condition   ": null
                            }
                        ] /* finalizing_table_conditions */
                    },
                    {
                        "refine_plan": [#再稍加改进执行计划
                            {
                                "table": "`t1` `alias1`"
                            },
                            {
                                "table": "`t2` `alias2`"
                            }
                        ] /* refine_plan */
                    },
                    {
                        "considering_tmp_tables": [
                            {
                                "adding_tmp_table_in_plan_at_position": 2,
                                "write_method": "continuously_update_group_row"
                            },
                            {
                                "adding_sort_to_table": ""
                            } /* filesort */
                        ] /* considering_tmp_tables */
                    }
                ] /* steps */
            } /* join_optimization */
        },
        {
            "join_execution": {#execute阶段
                "select#": 1,
                "steps": [
                    {
                        "temp_table_aggregate": {
                            "select#": 1,
                            "steps": [
                                {
                                    "creating_tmp_table": {
                                        "tmp_table_info": {
                                            "in_plan_at_position": 2,
                                            "columns": 3,
                                            "row_length": 18,
                                            "key_length": 4,
                                            "unique_constraint": false,
                                            "makes_grouped_rows": true,
                                            "cannot_insert_duplicates": false,
                                            "location": "TempTable"
                                        } /* tmp_table_info */
                                    } /* creating_tmp_table */
                                }
                            ] /* steps */
                        } /* temp_table_aggregate */
                    },
                    {
                        "sorting_table": "<temporary>",
                        "filesort_information": [
                            {
                                "direction": "asc",
                                "expression": "`alias1`.`col_int_key`"
                            }
                        ] /* filesort_information */,
                        "filesort_priority_queue_optimization": {
                            "usable": false,
                            "cause": "not applicable (no LIMIT)"
                        } /* filesort_priority_queue_optimization */,
                        "filesort_execution": [] /* filesort_execution */,
                        "filesort_summary": {
                            "memory_available": 262144,
                            "key_size": 9,
                            "row_size": 26,
                            "max_rows_per_buffer": 7710,
                            "num_rows_estimate": 18446744073709551615,
                            "num_rows_found": 8,
                            "num_initial_chunks_spilled_to_disk": 0,
                            "peak_memory_used": 32840,
                            "sort_algorithm": "std::sort",
                            "unpacked_addon_fields": "skip_heuristic",
                            "sort_mode": "<fixed_sort_key, additional_fields>"
                        } /* filesort_summary */
                    }
                ] /* steps */
            } /* join_execution */
        }
    ] /* steps */
}

4.总结

上述内容大致分为三个阶段:prepare阶段、optimize阶段、execute阶段,MySQL中基于成本的优化主要在optimize阶段,在单表查询时会主要关注optimize阶段的rows_estimation过程,这个rows_estimation过程分析了多种执行方案的成本耗费,在多表连接查询的时候,我们更多关注considered_execution_plans过程,不过总而言之查询优化器最终会选择成本最低的方案来作为最终的执行计划,即我们使用EXPLAIN语句时显示出的方案。

与MySql中执行计划如何来的——Optimizer Trace相似的内容:

MySql中执行计划如何来的——Optimizer Trace

当谈到MySQL的执行计划时,会有很多同学想:“我就觉得使用其他的执行方案比EXPLAIN语句输出的方案强,凭什么优化器做的决定与我得不一样?”。这个问题在MySQL 5.6之前或许自己很难解决,但是现在MySQL5.6及更高的版本中引入了Optimizer Trace。

TiDB与MySQL的SQL差异及执行计划简析

TiDB作为NewSQL,其在对MySQL(SQL92协议)的兼容上做了很多,MySQL作为当下使用较广的事务型数据库,在IT界尤其是互联网间使用广泛,那么对于开发人员来说,1)两个数据库产品在SQL开发及调优的过程中,都有哪些差异?在系统迁移前需要提前做哪些准备? 2)TiDB的执行计划如何查看,如何SQL调优? 本文做了一个简要归纳,欢迎查阅交流。

执行计划缓存,Prepared Statement性能跃升的秘密

摘要:一起看一下GaussDB(for MySQL)是如何对执行计划进行缓存并加速Prepared Statement性能的。 本文分享自华为云社区《执行计划缓存,Prepared Statement性能跃升的秘密》,作者: GaussDB 数据库。 引言 在数据库系统中,SQL(Structure

深入理解MySQL索引底层数据结构

在日常工作中,我们会遇见一些慢SQL,在分析这些慢SQL时,我们通常会看下SQL的执行计划,验证SQL执行过程中有没有走索引。通常我们会调整一些查询条件,增加必要的索引,SQL执行效率就会提升几个数量级。我们有没有思考过,为什么加了索引就会能提高SQL的查询效率,为什么有时候加了索引SQL执行反而会没有变化,本文就从MySQL索引的底层数据结构和算法来进行详细分析。

[转帖]深入理解mysql-第十一章 mysql查询优化-Explain 详解(中)

一、执行计划-type属性 执行计划的一条记录就代表着MySQL对某个表的执行查询时的访问方法,其中的type列就表明了这个访问这个单表的方法具体是什么,比方说下边这个查询: mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';+ + + + + + +

[转帖]第四章节 索引及执行计划

第四章节 索引及执行计划 https://www.jianshu.com/p/fdd3c5e815e9 本课程,适合具备一定Linux运维或者开发基础的朋友,课程定级中、高级DBA。只要掌握80%,轻松助力薪资15k-25K。课程内容均来自与MySQL官网+MySQL源码。配套精品视频(2021 5

MySQL 列操作记录

在 MySQL 中,你可以使用多种命令和语句来执行列操作,包括添加、修改、删除列等。以下是一些与列操作相关的常用 MySQL 命令和语句: 1. 添加列: 添加新列到表格中:ALTER TABLE table_name ADD COLUMN column_name datatype; 2. 修改列:

SHOW PROCESSLIST 最多能显示多长的 SQL?

在 MySQL 中,如果我们想查看实例当前正在执行的 SQL,常用的命令是SHOW PROCESSLIST。 但如果 SQL 过长的话,就会被截断。这时,我们一般会用SHOW FULL PROCESSLIST来查看完整的 SQL。 最近碰到一个 case,发现无论是使用 SHOW PROCESSLI

MySQL自定义函数(User Define Function)开发实例——发送TCP/UDP消息

开发背景 当数据库中某个字段的值改为特定值时,实时发送消息通知到其他系统。 实现思路 监控数据库中特定字段值的变化可以用数据库触发器实现。还需要实现一个自定义的函数,接收一个字符串参数,然后将这个字符传通过udp消息发送到指定端口。 在触发器中执行这个自定义函数并在其他系统中监听指定端口的消息。从而

阿里DataX极简教程

目录简介工作流程核心架构核心模块介绍DataX调度流程支持的数据实践下载环境执行流程引用 简介 DataX是一个数据同步工具,可以将数据从一个地方读取出来并以极快的速度写入另外一个地方。常见的如将mysql中的数据同步到另外一个mysql中,或者另外一个mongodb中。 工作流程 read:设置一