GPT大语言模型Vicuna本地化部署实践(效果秒杀Alpaca)

gpt,语言,模型,vicuna,本地化,部署,实践,效果,秒杀,alpaca · 浏览次数 : 182

小编点评

**模型推理效果** **1)对精确的推理效果** * 推荐菜谱:感觉是在一本正经的胡说八道,按照推理的结果很难找到正确的答案。 * 数据计算能力目前看还是比较弱的,简单的乘法目前还不能够给出正确的答案。 **2)模型的推理效率** * 模型的推理效率也是非常不错的,即使使用单GPU进行推理也能做到秒级响应。 * 推理过程中显存占用也才只有60%多,跟空载时候的50%多没差多少。 **3)模型的训练效率** * 训练过程需要使用8个GPU,每个GPU占用60%多。 * 训练总时间大约300个时间点。 **4)模型的学习率** * 学习率参数设置为2e-5,每轮训练只使用0.03%的学习率。 **5)模型的保存策略** * 模型保存策略设置每训练300个时间点保存一个模型权重文件。 * 最总保存10个模型权重文件,每个文件保存300个时间点。 **6)模型的测试结果** * 模型测试结果显示,Vicuna模型在整体表现和推理效率上可以说是秒杀Alpaca模型的。

正文

背景

上一篇文章《GPT大语言模型Alpaca-lora本地化部署实践》介绍了斯坦福大学的Alpaca-lora模型的本地化部署,并验证了实际的推理效果。

总体感觉其实并不是特别理想,原始Alpaca-lora模型对中文支持并不好,用52k的中文指令集对模型进行fine-tuning之后,效果依然达不到网上说的媲美GPT-3.5的推理效果,验证了那句话:“事不目见耳闻,而臆断其有无,可乎?”

在具有3块Tesla P40显卡的服务器上,利用3块GPU显卡加载模型参数和计算,进行一次简单的推理(非数学运算和逻辑运算)也需要大概30s-1min的时间,效率简直慢的惊人。在京东云GPU云主机部署上,虽然推理效率提高了很多,用中文数据集对模型进行了fine-tuning,然而对中文的支持也并不是很好,经常会出现乱码、重复问题、词不达意等情况。

最近大模型也同雨后春笋般的层出不穷,各个大厂和科研机构都推出了自己的大模型,其中基于LLaMA(开源且好用)的最多,所以决定再看看其他模型,有没有推理效果好,中文支持好,同时推理效率高的模型。

经过筛选,Vicuna-13B的推理效果据说达到了ChatGPT的90%以上的能力,优于LLaMA-13B和Alpaca-13B的效果(具体如下图所示)。评估方法是对各个模型Alpaca、LLaMA、ChatGPT和Bard输入同样的问题,然后通过GPT-4当裁判对推理结果进行打分,以ChatGPT的回答作为100分,回答越接近得分越高(虽然评估方法并不科学,但是目前看也没有更好的办法对模型推理结果进行更科学的评估)。

同时Vicuna的训练成本也很低,据说只需要$300左右,所以尝试本地化部署一下Vicuna-7B,看看效果如何,说干就干。

环境准备

由于之前本地化部署过Alpaca-lora模型了,本以为可以直接下载开源包,简单部署一下就可以看到效果了,结果发现我还是“too young,too simple”了,环境部署和解决包冲突的过程竟然比第一次部署Alpaca-lora模型还要费劲。

简单的复述一下部署流程,详细的可以参考上一篇内容《GPT大语言模型Alpaca-lora本地化部署实践》。

  1. 本地化部署或GPU云主机部署:GPU服务器具有4块独立的GPU,型号是P40,单个P40算力相当于60个同等主频CPU的算力;GPU云主机要选购P40https://www.jdcloud.com/cn/calculator/calHost
  2. 安装显卡驱动和CUDA驱动

模型准备

由于Vicuna 是基于LLaMA模型的,为了符合LLaMA 模型license授权,仅发布了 delta 权重,所以我们需要将原始llama-7b模型与delta模型权重合并之后,才能得到vicuna权重。

首先是下载llama-7b模型,由于文件比较大,所以用lfs直接从文件服务器上下载,大小有26G,执行:

git lfsclonehttps://huggingface.co/decapoda-research/llama-7b-hf

然后是下载delta模型,执行:

git lfsclonehttps://huggingface.co/lmsys/vicuna-7b-delta-v1.1

下载完成后进行权重合并,执行:

python -m fastchat.model.apply_delta \ --base ./model/llama-7b-hf \ --delta ./model/vicuna-7b-delta-v1.1 \ --target ./model/vicuna-7b-all-v1.1

这个合并过程会很快,最终结果如下,合并之后参数大小变成了13G。

合并之后的目录下会有配置文件和数据文件。

安装依赖包

Vicuna主要用到3个依赖包,fschat、tensorboardX和flash-attn,前2个安装比较顺利,直接pip install fschat、tensorboardX即可安装完成。flash-attn安装遇到了问题,一直报以下错误:

经过一番检索,发现是gcc版本太低导致的,需要升级gcc,首先查看了一下本地的gcc版本,gcc -v和g++ -v发现是4.8.5的,确实是太低了,那么既然要升级,就升级到最新版,直接下载13.1版本,可以在
http://ftp.gnu.org/gnu/gcc/选择想要安装的版本,这里选择的是gcc-13.1.0.tar.gz。

执行:

tar -xzf gcc-13.1.0.tar.gz

cd gcc-13.1.0

./contrib/download_prerequisites

mkdir build

cd build/

../configure -enable-checking=release -enable-languages=c,c++ -disable-multilib

然后执行make编译,注意这里make时间会非常长,可能会持续几个小时,可以使用 make -j 8让make最多运行8个编译命令同时运行,加快编译速度。

顺利完成后,我们再执行make install进行安装。

然后用gcc -v和g++ -v验证版本是否已经更新,如果提示如下,说明安装完成。

然后我们需要卸载原有的gcc和g++,切换到root权限,执行yum -y remove gcc g++。

配置新版本全局可用,执行ln -s /usr/local/bin/gcc /usr/bin/gcc。

更新链接库,执行:

查看原链接库:strings /usr/lib64/libstdc++.so.6 | grep CXXABI

删除原链接库:rm -f /usr/lib64/libstdc++.so.6

建立软连接:ln -s /usr/local/lib64/libstdc++.so.6.0.29 /usr/lib64/libstdc++.so.6

查看新链接库:strings /usr/lib64/libstdc++.so.6 | grep CXXABI

如果最新版本有变化,那么恭喜你,说明已经升级成功啦。

安装cuda

由于之前是用rpm包安装的cuda,有些文件是缺失的,运行时会报各种奇奇怪怪的错误,这里就不赘述了(只有经历过才会懂),直接介绍用二进制文件安装cuda过程。

下载地址:
https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=CentOS&target_version=7&target_type=runfile_local

注意这里要选择runfile(local)。

然后执行sh
cuda_11.7.0_515.43.04_linux.run。

安装完成后,需要配置环境变量,在本地.bash_profile中配置如下两项:

下面验证一下安装是否成功,执行nvcc -V,如下图所示,那么恭喜你,安装成功啦。

安装cudnn和nccl

安装cudnn和nccl需要先在nvidia注册账号,注册之后可以在以下两个地址下载相应的rpm包,然后rpm -ivh XXXXX.rpm包即可。

cudnn下载地址: https://developer.nvidia.com/cudnn

nccl下载地址: https://developer.nvidia.com/nccl/nccl-legacy-downloads

安装完成后,如下图所示说明已经安装成功rpm包。

模型推理

又到激动人心的时刻啦,让我们来测试一下看看模型的推理效果如何?首先我们先擦拭一下还没有干透辛勤的汗水,一切努力,都是为了最终能跟机器人程序对上话,理想情况是让我们感觉它并不是一个机器人。

在终端执行如下命令,然后输入问题即可。

python -m fastchat.serve.cli --model-path ./model/vicuna-7b-all-v1.1 --style rich

当然,还可以根据不同的需求场景,设置不用的运行参数,如下:

压缩模型 预测效果会稍差一点,适合GPU显存不够的场景

python -m fastchat.serve.cli --model-path ./model/vicuna-7b-all-v1.1 --load-8bit --style rich

使用cpu进行推理,速度会很慢,慎用

python -m fastchat.serve.cli --model-path ./model/vicuna-7b-all-v1.1 --device cpu --style rich

使用多个GPU进行预测

python -m fastchat.serve.cli --model-path ./model/vicuna-7b-all-v1.1 --num-gpus 3 --style rich

1)推荐菜谱测试:

2)多语言测试:

3)代码能力测试:

4)数学计算测试

5)普通对话推荐

推理过程中GPU服务器资源使用情况,目前使用单GPU进行推理,都可以做到秒级响应,GPU内存空加载13G,推理时不到15G,推理时单GPU算力基本可以达到90%以上,甚至100%,如下图所示。

总结一下:

1)对精确的推理效果并不是很理想,比如推荐菜谱,感觉是在一本正经的胡说八道,按照推理的结果很难做出可口的饭菜️;

2)对多种自然语言的支持,这个真的是出乎预料,竟然日语和西班牙语完全都能够自如应对,可以说是相当的惊艳了;

3)编码能力还是可以的,能够大概给出基本需求,当然如果想直接编译执行可能还需要人工微调,但是作为辅助工具应该是没问题的;

4)数据计算能力目前看还是比较弱的,简单的乘法目前还不能够给出正确的答案;

5)普通的对话是完全没有问题的,对中文的理解也完全能否符合预期,解解闷排解一下孤独是能够cover住的。

由于模型目前还没有做fine-tuning,从目前的推理效果来看,已经是非常不错了,而且推理的效率也是非常不错的,即使使用单GPU进行推理也可以做到秒级响应,而且推理过程中显存占用也才只有60%多,跟空载时候的50%多没差多少,总之在没有经过fine-tuning的情况下,模型的推理表现和推理效率还是可以打7-8分(满分10分)的,如果假以时日,有足够的语料库和进行fine-tuning的话,效果还是可期的。

模型fine-tuning

要想使模型适合某一特定领域内的场景,获取特定领域的知识是必不可少的,基于原始模型就要做fine-tuning操作,那么我们尝试做一下fine-tuning,看看效果如何吧。

fine-tuning需要在终端执行一下命令:

torchrun --nproc_per_node=3 --master_port=40001 ./FastChat/fastchat/train/train_mem.py \
    --model_name_or_path ./model/llama-7b-hf  \
    --data_path dummy.json \
    --bf16 False \
    --output_dir ./model/vicuna-dummy \
    --num_train_epochs 2 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 8 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 300 \
    --save_total_limit 10 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --report_to "tensorboard" \
    --fsdp "full_shard auto_wrap" \
    --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
    --tf32 False \
    --model_max_length 2048 \
    --gradient_checkpointing True \
    --lazy_preprocess True


最终./model/vicuna-dummy目录输出就是我们fine-tuning之后的模型权重文件目录。

很遗憾,本文fine-tuning没有成功,报错如下:

原因也很简单,由于我们使用的GPU型号是Tesla P40,此款显卡使用的SM_62架构,目前模型fine-tuning至少需要SM_75及以上架构,看社区有在4090、A100或者A80显卡上fine-tuning成功的,所以fine-tuning只能后续再更高架构的显卡上进行了。

后续工作

终上,Vicuna模型在整体表现和推理效率上可以说是秒杀Alpaca模型的,我们本文测试用的是Vicuna-7b,如果是Vicuna-13b效果会更好,而且对多种自然语言(包含中文)的支持也要远远好于Alpaca模型,确实像社区所说的,目前Vicuna模型可以说是开源大模型的天花板了,如果想基于开源大模型进行二次开发,是个不二的选择。

基于大模型的本地化部署工作目前就告一段落了,后续做的工作可能有以下几点:

1)如果有更好的显卡,可以对vicuna进行fine-tuinig,验证一下fine-tuning之后模型能不能学到特定领域的知识;后续准备使用公司内部提供的试用资源【京东云GPU云主机p.n3a100系列】,这个产品提供Nvidia® A100 GPU(80G显存),搭配使用Intel® Xeon® Platinum 8338C 处理器及DDR4内存,支持NVLink,单精度浮点运算峰值能达到156TFlops,可以说是最强算力了。

2)找到合适的与目前应用结合的场景,将大语言模型应用落地;

3)基于vicuna开源项目进行二次开发,封装成可用的服务;

4)基于大语言模型进行更多的探索和学习。

来源:京东云开发者社区

作者:Beyond_luo(未经授权请勿转载)

与GPT大语言模型Vicuna本地化部署实践(效果秒杀Alpaca)相似的内容:

GPT大语言模型Vicuna本地化部署实践(效果秒杀Alpaca)

Vicuna-13B的推理效果据说达到了ChatGPT的90%以上的能力,优于LLaMA-13B和Alpaca-13B的效果。同时Vicuna的训练成本也很低,所以尝试本地化部署一下Vicuna-7B,看看效果如何,说干就干。

GPT大语言模型Alpaca-lora本地化部署实践【大语言模型实践一】

本文进行本地化部署实践的Alpaca-lora模型就是Alpaca模型的低阶适配版本。本文将对Alpaca-lora模型本地化部署、微调和推理过程进行实践并描述相关步骤。

揭秘ChatGPT,如何打造自己的自定义指令

在大语言模型的训练中,经常会看到 Instruct Tuning(指令微调)这个单词,GPT家族中也有一个 InstructGPT的模型(指令微调后的GPT),通过指令微调的LLM会更按照我们期望的方式输出

使用Microsoft.SemanticKernel基于本地运行的Ollama大语言模型实现Agent调用函数

大语言模型的发展日新月异,记得在去年这个时候,函数调用还是gpt-4的专属。到今年本地运行的大模型无论是推理能力还是文本的输出质量都已经非常接近gpt-4了。而在去年gpt-4尚未发布函数调用时,智能体框架的开发者们依赖构建精巧的提示词实现了gpt-3.5的函数调用。目前在本机运行的大模型,基于这一

本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络

赛博斗地主——使用大语言模型扮演Agent智能体玩牌类游戏。

通过大模型来实现多个智能体进行游戏对局这个想对已经比较成熟了无论是去年惊艳的斯坦福小镇还是比如metaGPT或者类似的框架都是使用智能体技术让大模型来操控,从而让大模型跳出自身“预测下一个token”的文字功能去探索更多的应用落地可能性。不过一直没有真正操作过,直到前段时间看到一个新闻《和GPT-4

【转帖】千亿参数大模型首次被撬开!Meta复刻GPT-3“背刺”OpenAI,完整模型权重及训练代码全公布

https://cloud.tencent.com/developer/article/1991011 千亿级参数AI大模型,竟然真的能获取代码了?! 一觉醒来,AI圈发生了一件轰动的事情—— Meta AI开放了一个“重达”1750亿参数的大语言模型OPT-175B,不仅参数比GPT-3的3750

OpenAI“杀疯了”,GPT–4o模型保姆级使用教程!一遍就会!

5月14日凌晨1点,OpenAI发布了名为GPT-4o 最新的大语言模型,再次引领了人工智能领域的又一创新浪潮,让整个行业都为之震动。 据OpenAI首席技术官穆里-穆拉提(Muri Murati)表示,GPT-4o是在继承GPT-4智能的基础上,对文本、视觉和音频功能进行了进一步改进,而且目前所有

【GPT-4理论篇-1】GPT-4核心技术探秘

在本文中,我将结合GPT-4的技术报告、GPT-4相对于GPT 3.5/ChatGPT的提升、GPT-4和ChatGPT的对比、OpenAI的近期工作,大语言模型(Large Language Model,LLM)模型的科研进展,多模态模型的科研进展等多方面的信息,深入分析GPT-4的技术细节。

智能工作流:Spring AI高效批量化提示访问方案

集用SpringAI搭建系统,依靠线程池\负载均衡等技术进行请求优化,用于解决科研&开发过程中对GPT接口进行批量化接口请求中出现的问题。大语言模型接口以OpenAI的GPT 3.5为例,JDK版本为17。