ChatGPT的探索与实践-业务应用篇

chatgpt,探索,实践,业务,应用 · 浏览次数 : 132

小编点评

## 使用 GPT 进行代码开发、脚本编写和与618大促业务结合 **代码开发** * 使用 GPT 描述 UI 设计稿时,要明确语言类型、目标类型、宽高颜色等信息。 * 避免使用专业术语,尽量使用自然语言表达需求。 * 注意语句逻辑,避免自相矛盾描述。 * 对描述需求时,可以提供一些示例代码,帮助 GPT 生成更准确的代码。 **脚本编写** * 当需要进行全工程级别的名称替换时,可以使用 GPT 生成脚本。 * 当需要进行多个关键词拼接时,可以使用 GPT 生成脚本。 * 针对一些场景,可以使用 GPT 进行自然语言描述转换,如生成图片描述或自然语言描述。 **与618大促业务结合** * 可以将 GPT 与搜索功能结合,利用 GPT 对用户的搜索关键词进行分析,并根据分析结果生成相关商品推荐。 * 可以将 GPT 与商品评价等信息结合,利用 GPT 对用户输入进行分析,并生成相应的推荐内容。 * 可以将 GPT 与新品新闻等信息结合,利用 GPT 对用户输入进行分析,并生成相应的推荐内容。 **其他应用场景** * 将 GPT 与售后系统结合,利用 GPT 对用户抱怨信息进行分析,并生成相应的回复内容。 * 将 GPT 与618大促活动页面结合,利用 GPT 对用户搜索商品时,提供相关活动信息。 * 将 GPT 与其他 chatbot 等系统结合,利用 GPT 提供个性化推荐和聊天服务。

正文

本篇文章主要介绍在实际的开发过程当中,如何使用GPT帮助开发,优化流程,恰逢今年京东20周年庆,文末会介绍如何与618大促实际的业务相结合,来提升应用价值。全是干货,且本文所有代码和脚本都是利用GPT生成的,请放心食用。

场景一:写代码

使用GPT进行代码开发是许多人做的最多的一件事,只要用自然语言把自己的需求描述清楚,就可以让GPT写出一段可执行的代码段,甚至是完整的应用。而且只要描述得足够明确清晰,产生的代码就不会有bug,非常高效。

举个实际应用的例子,在先前的版本我们工程有一个需求,要求对落地页的提示黄条UI进行改版,具体的需求描述为:

UI设计稿:

这是一个相当简单的需求,我们准备利用Flutter进行开发,现在假设我是一个对dart语言不是很了解的开发者,甚至是从没有Flutter开发基础的人,通过GPT我们也可以进行这种简单的开发工作。在对GPT进行描述的时候,要尽量用通顺的语言将自己的需求描述清楚,并且将关键的信息点名:

这样GPT就可以帮我们生成所需要的视图代码:

这对于没有接触过dart开发语言的开发者非常友好,由于可以任意指定编程语言,所以理论上,我们所有人都可以胜任全平台开发的工作。

我总结了在使用GPT进行代码开发时的重点:

1.主要信息一定要表达明确,如语言类型,目标类型,宽、高、颜色、字号,间距等数值。

2.想象自己是产品经理或者是设计师,不用拘泥于专业术语,例如UIview、Segment、标签等等,尽量使用自然语言表达。

3.不要存在自相矛盾的描述,100%会产生bug。

4.有些同学在描述需求的时候容易紧张,造成语句不通。在描述的时候完全可以不要着急,慢慢措辞。

5.不要涉密!不要涉密!不要涉密!GPT说到底是一个外部工具软件,不是一个什么问题都可以问的“树洞”,涉及到商业机密的问题都不可以拿来询问。

场景二:写脚本

这是我本人经常拿来使用的应用场景,对于一些重复性较高的劳动,编写脚本显然是最好的选择,甚至我有的同事认为,未来的发展方向就是脚本编写代码。脚本的开发完全也可以交由GPT来进行。比如我们有一个需求,由于接入主站基础库,我们有一些工具类的类名产生了冲突,这种情况下需要进行全工程的类名替换,这种场景就很适合使用脚本。

一般情况下写这样一个脚本至少需要1~2个小时左右,熟练的大佬也需要半个小时左右,但是使用GPT,几秒钟就可以生成符合要求的脚本。我总结一下的几种应用场景非常适合使用脚本来处理:

1.全工程级别的名称替换

2.APP图片名称替换

3.单元测试

4.转换自然语言

这里说一下转换自然语言的作用,作为开发者,更习惯的是输入关键数值来得到结果,但是GPT需要的是自然语言的描述,毕竟叫“chat”嘛,所以我们可以耍个小心机:用一个简单的脚本,输入数值,输出自然语言描述,然后将描述转达给GPT。

width = int(input("请输入宽度:"))
height = int(input("请输入高度:"))
color = input("请输入颜色:")

view = '#' * width + '\n'
view += ('#' + ' ' * (width - 2) + '#\n') * (height - 2)
view += '#' * width

description = f"生成一个宽度为{width},高度为{height}的视图,使用{color}颜色填充。"

print(view)
print(description)

类似于这种转换脚本,可以让我们更高效的使用GPT。

场景三:与实际业务结合

我之前的文章最后曾提到几种将GPT与实际业务结合的设想:

导购

把ChatGPT的服务集成到搜索功能中,在用户进行搜索的时候,利用他强大的功能给出用户购买的意见,对于还没有想好买不买,买那个,甚至没有想好买什么的用户,给出导向性的意见,促进转化率。

软文创作

我们的项目中有软性广告文章展示的适用场景,相比起人工创作写作,ChatGPT不仅更为高效,还能结合大数据趋势,给出用户更感兴趣的文章类型。创作优惠活动推荐,商品评价,新品新闻等等文章,使用ChatGPT大有可为。

反向活动推荐

我们不能决定用户询问ChatGPT时,他会给出什么样的答案,但是我们可以根据她的答案做反向推演,他推荐什么,我们就顺势做什么活动,这样我们既能利用ChatGPT带来的红利,又可以省去预测用户兴趣点带来的开销和风险。

售后

ChatGPT本质上是一个对话型的人工智能,使用他接入售后系统实际上最为合适,有了他的帮助,可以预见:用户抱怨机器人客服答非所问,无法解决问题,以及人工客服成本高昂的问题,将成为历史。

我认为这几种设想每一个都是可以投入实际应用并落地的,也都有相当的使用价值。接下来我主要介绍如何利用GPT进行618大促导购。

首先,用户对某种商品进行搜索,主要是通过搜索栏,我们在要将GPT接入搜索进行引导,就要自己搭建一套基础环境,将用户输入的关键词传递给GPT,再把GPT输出的结果展示给用户,基础环境的作用除了作为调用GPT的“服务器”,最后可以对用户的输入,以及GPT的输出进行“加工”,包装上“京东20周年庆”、“618大促”的相关信息,最终实现“大促导购”的目的。

第一部分:对用户的输入进行包装,比如对用户的关键词包上一层“用京东搜索”的外衣:

def search_keyword(keyword):
    url="https://search.jd.com/Search?keyword={keyword}"
    response = requests.get(url)
    soup = BeautifulSoup(response.text, "html.parser")

    #提取相关介绍
    introduction = soup.select_one(".p-parameter").get_text(strip=True)
    return introduction

#用户输入关键词
user_input = input("请输入关键词:")

#调用函数进行搜索和提取介绍
result = search_keyword(user_input)

prompt="打开京东网站,618大促活动商品里搜索 {user_input},并给出其相关介绍"
#这里的prompt既为向GTP提问的问题,由于GPT接受的是自然语言,所以这里我们可以任意的添加我们想要的导向性描述,例如“618大促活动商品”、“618精选活动”、“京东20周年庆优惠”等等

第二部分:将包装好的文案作为入参,调用GPT的API进行请求

api_endpoint = "https://api.openai.com/v1/chat/completions"
access_token = "你的access_token"
 
params = {
    "messages": [{"role": "user", "content": prompt}],
    "temperature": 0.7,
    "model": "gpt-3.5-turbo"
}
headers = {
    "Authorization": "Bearer {access_token}",
    "Content-Type": "application/json"
}
response = requests.post(api_endpoint, headers=headers, json=params)

第三部分:对GPT返回的结果进行解析,并按照我们的需求进行展示

if response.status_code == 200:
    response_text = json.loads(response.text)["choices"][0]["message"]["content"]
    # 输出结果
    print("为您在京东推荐了如下结果: {response_text}")
    print("您商品的相关介绍:{result}”)
else:
    print(f"error: {response.status_code} - {response.text}")

发散思维:GTP接受的是自然语言询问,所以在向他提问的问题中,我们可以任意的添加想要的限定信息,甚至可以结合配置系统,将“618大促活动商品”、“618精选活动”、“京东20周年庆优惠”等活动作为配置信息组合进prompt参数字段,实现动态配置活动导购。

作者:京东零售 姜海

来源:京东云开发者社区

与ChatGPT的探索与实践-业务应用篇相似的内容:

ChatGPT的探索与实践-业务应用篇

本篇文章主要介绍在实际的开发过程当中,如何使用GPT帮助开发,优化流程,恰逢今年京东20周年庆,文末会介绍如何与618大促实际的业务相结合,来提升应用价值。全是干货,且本文所有代码和脚本都是利用GPT生成的,请放心食用。

我在京东做研发 | 京东云算法科学家解析爆火的ChatGPT

令人惊艳的ChatGPT横空出世 背后有怎样的前沿技术支撑 走向大规模产品应用又有何局限 深耕对话式AI技术十余年 京东云算法科学家将带您一同走进技术世界 解析ChatGPT的技术亮点与局限 分享下一代对话式AI技术趋势 从好玩到好用 探讨对话式AI的落地实践

大火的ChatGPT与表格插件结合会有哪些意想不到的效果?

### 大火的ChatGPT与表格插件结合会有哪些意想不到的效果? ChatGPT已经火了好久了,想探索一下ChatGPT在表格中的使用场景,思考了很久自己整理了三点: 一、使用助手:根据需求提供操作指南、按照描述生成公式。 二、数据分析:对表格中的数据提供数据分析建议,按照描述分析数据。 三、工作

LLM探索:环境搭建与模型本地部署

## 前言 最近一直在炼丹(搞AIGC这块),突然发现业务代码都索然无味了… 上次发了篇AI画图的文章,ChatGPT虽然没法自己部署,但现在开源的LLM还是不少的,只要有一块差不多的显卡,要搞个LLM本地部署还是没问题的。 本文将介绍这以下两个国产开源LLM的本地部署 - ChatGLM-6B -

ChatGPT-4o模型功能介绍

1.概述 OpenAI 持续突破人工智能的边界,推出了其最新模型 ChatGPT-4o,作为 ChatGPT-4 的继承者,该模型有望带来显著的提升和创新功能。本文将深入解析 ChatGPT-4 与 ChatGPT-4o 之间的区别,并探讨它们的功能、性能以及潜在的应用领域。我们将全面比较这两个模型

从Chat-GPT看爆火技术概念及医疗领域科技与应用场景

本文大致分为两方面内容,第一部分是热门前沿科技概述,主要描述有什么与应用场景。第二部分是医疗领域科技前沿,已发生的和可探索的医疗行业的应用场景。

GPT-4助力数据分析:提升效率与洞察力的未来关键技术

ChatGPT-4作为一种先进的自然语言处理技术,为数据分析带来了革命性的提升,助力企业和组织更高效地挖掘数据价值。本文将探讨ChatGPT-4在数据分析中的应用,以及如何通过该技术提高数据分析的效率和洞察力。

【ChatGPT-应用篇】基于chatGPT覆盖测试过程的初步探索

ChatGPT如此火爆之势,作为测试人员对此也颇为好奇,简单的人机对话有哪些可以帮助我们测试工作呢?本文主要谈从测试视角,结合测试流程来看chatGPT的应用。

探索ChatGPT的Fine-tuning和Embeddings

1.概述 今天我们将深入探索ChatGPT的两项核心技术:Fine-tuning(微调)和Embeddings(嵌入)。这些技术在现代自然语言处理领域扮演着至关重要的角色,为模型的性能提升和适应特定任务需求提供了关键支持。ChatGPT作为GPT家族的一员,已经在多个领域展现了出色的表现,而其背后的

项目完成小结:使用Blazor和gRPC开发大模型客户端

## 前言 先介绍下这个项目。 最近我一直在探索大语言模型,根据不同场景训练了好几个模型,为了让用户测试使用,需要开发前端。 这时候,用 Gradio 搭建的前端是不太够的,虽说 GitHub 上也有一堆开源的 ChatGPT 前端,但我看了一圈,并没有找到便于二次开发定制的,再一想,这么简单的功能