GPT-4助力数据分析:提升效率与洞察力的未来关键技术

gpt,助力,数据分析,提升,效率,洞察力,未来,关键技术 · 浏览次数 : 234

小编点评

**ChatGPT-4 在数据分析中的应用** **摘要** 随着大数据时代的到来,数据分析已经成为企业和组织的核心竞争力。然而,传统的数据分析方法往往无法满足日益增长的数据分析需求的数量和复杂性。在这种背景下,ChatGPT-4作为一种先进的自然语言处理技术,为解决这一问题提供了新的思路。 **ChatGPT-4 技术概述** ChatGPT-4是一种基于深度学习的自然语言处理技术,能够理解和生成人类语言。通过大量的训练数据和复杂的神经网络模型,ChatGPT-4可以实现对文本数据的高效处理,从而提高数据分析的效率和准确性。 **应用场景** * 使用ChatGPT-4生成实验所需用到的HIVE库表Prompt word: ```sql Prompt word:现在请创建一个名为“app”的Hive库,并且包含有如下表: ``` * 使用ChatGPT-4往HIVE库表中插入一些样例数据: ```sql Prompt word:现在请往上述app库中的表各插入一些样例数据。 ``` * HIVE单表数据分析场景: ```sql Prompt word:现在需要在上述插入数据后的app库中,查询近3个月每个月每个产品的下单总用户数、订单数量、购买总数量、人均订单数量、人均购买数量 、购买总数量占比(精确到小数点后两位),请给出HIVESQL,并给出执行结果。 ``` * HIVE多表数据分析场景: ```sql Prompt word:现在需要在上述插入数据后的app库中,查询近3个月内每个月份每个用户在手机数码产品类别下的下单总用户数、订单数量、购买总数量、下单总金额、人均订单数量、人均购买数量 、购买总数量占比(精确到小数点后两位),产品表、用户表需使用最新分区的数据,对表的限定条件应当写在括号扩起来的子查询里,不要写在关联条件后面,请给出HIVESQL,并给出执行结果。 ``` * ClickHouse使用ReplacingMergeTree引擎在分布式场景下实现订单状态更新场景: ```sql Prompt word:你是clickhouse技术专家,请帮我创建一个本地表+分布式表的订单表,并使用ReplacingMergeTree引擎在分布式场景下实现订单状态更新。 ``` * Flink实时分析场景: ```sql Prompt word:你现在是FLINK技术专家,以Bounded ROWS OVER Window场景为例。假设,一张商品上架实时Kafaka的消息表,包含有商品ID、商品类型、商品上架时间、商品价格数据。要求输出在当前商品上架之前同类的3个商品中的最高价格,请给出详细的程序代码。 ``` **结果** 通过以上场景的实验,可以观察到ChatGPT-4可以有效提高数据分析的效率和洞察力,帮助企业和组织做出更明智的决策。

正文

摘要

随着大数据时代的到来,数据分析已经成为企业和组织的核心竞争力。然而,传统的数据分析方法往往无法满足日益增长的数据分析需求的数量和复杂性。在这种背景下,ChatGPT-4作为一种先进的自然语言处理技术,为数据分析带来了革命性的提升,助力企业和组织更高效地挖掘数据价值。本文将探讨ChatGPT-4在数据分析中的应用,以及如何通过该技术提高数据分析的效率和洞察力。

注:此图片选自阿里巴巴集团达摩院和新加坡南洋理工大学合作论文《Is GPT-4 a Good Data Analyst》

1. 引言

随着互联网和移动设备的普及,数据的产生和传播速度不断加快,企业和组织需要更高效的方法来处理和分析这些数据。传统的数据分析方法往往依赖于人工处理和分析,在需求量大的时候容易出现效率低的问题。因此,如何利用先进的技术提高数据分析的效率和准确性成为了一个迫切的问题。ChatGPT-4作为一种基于深度学习的自然语言处理技术,为解决这一问题提供了新的思路。

2. ChatGPT-4技术概述

ChatGPT-4是一种基于深度学习的自然语言处理(NLP)技术,能够理解和生成人类语言。通过大量的训练数据和复杂的神经网络模型,ChatGPT-4可以实现对文本数据的高效处理,从而提高数据分析的效率和准确性。

3. ChatGPT-4在数据分析中的应用

本文将从以下几个场景来探讨ChatGPT-4在数据分析中的应用:

3.1 使用ChatGPT-4生成实验所需用到的HIVE库表

Prompt word

现在请创建一个名为"app"的Hive库,并且包含有如下表:

  • users:存储用户信息 user_id (INT):用户ID username (STRING):用户名 email (STRING):用户邮箱 registration_date (DATE):注册日期
  • products:存储产品信息 product_id (INT):产品ID product_name (STRING):产品名称 category (STRING):产品类别 price (FLOAT):产品价格
  • orders:存储订单信息 order_id (INT):订单ID user_id (INT):用户ID product_id (INT):产品ID order_date (DATE):订单日期 quantity (INT):购买数量

每个表格式都为 ORC格式,每个都有一个 dt 也即是每天加工日期命名的分区字段,建表的时候表和字段都要有中文注释。

3.2 使用ChatGPT-4往HIVE库表中插入一些样例数据:

Prompt word

现在请往上述app库中的表各插入一些样例数据。

3.3 HIVE单表数据分析场景:

Prompt word

现在需要在上述插入数据后的app库中,查询近3个月每个月每个产品的下单总用户数、订单数量、购买总数量、人均订单数量、人均购买数量 、购买总数量占比(精确到小数点后两位),请给出HIVESQL,并给出执行结果。

Prompt word

请把上述结果绘制成合适的图表,以更可观的展现每个产品在每月的销量占比。

Prompt word

请帮忙解读上述结果数据。

3.4 HIVE多表数据分析场景:

Prompt word

现在需要在上述插入数据后的app库中,查询近3个月内每个月份每个用户在手机数码产品类别下的下单总用户数、订单数量、购买总数量、下单总金额、人均订单数量、人均购买数量 、购买总数量占比(精确到小数点后两位),产品表、用户表需使用最新分区的数据,对表的限定条件应当写在括号扩起来的子查询里,不要写在关联条件后面,请给出HIVESQL,并给出执行结果。

Prompt word

请根据插入的数据,给出上述HIVESQL执行后的预期结果。

3.5 ClickHouse使用ReplacingMergeTree引擎在分布式场景下实现订单状态更新场景:

Prompt word

你是clickhouse技术专家,请帮我创建一个本地表+分布式表的订单表,并使用ReplacingMergeTree引擎在分布式场景下实现订单状态更新。

3.6 Flink实时分析场景:

Prompt word

你现在是FLINK技术专家,以Bounded ROWS OVER Window场景为例。假设,一张商品上架实时Kafaka的消息表,包含有商品ID、商品类型、商品上架时间、商品价格数据。要求输出在当前商品上架之前同类的3个商品中的最高价格,请给出详细的程序代码。

4. ChatGPT-4助力数据分析提升效率和洞察力的具体体现

从以上部分所列举的6个场景,总结ChatGPT-4助力数据分析提升效率和洞察力体现在以下几个方面:

  • 4.1)提高效率:通过用自然语言描述需求,ChatGPT-4会自动将其转换为相应的SQL查询。这样可以减少手动编写SQL代码的时间和精力,提高数据分析的效率;
  • 4.2)增强洞察力:ChatGPT-4可以更好地挖掘出隐藏在结果数据中的关键信息,为数据分析提供图表、文字结论等更多维度的数据洞察,从而帮助企业和组织做出更明智的决策;
  • 4.3)问题解决能力提升:ChatGPT-4涵盖了数据分析各领域的知识,具有强大的自然语言理解能力,能够进行一定程度的逻辑推理,可以快速地帮助解决数据分析中遇到的问题。

5. 结论

随着大数据时代的来临,数据分析已逐渐成为企业和组织的核心竞争力。作为一种先进的自然语言处理技术,ChatGPT-4为数据分析带来了革命性的提升,助力企业和组织更高效地挖掘数据价值。

然而,当前数据安全风险可能是阻碍企业在大数据平台引入ChatGPT-4的主要因素。

据悉,OpenAI计划在未来推出ChatGPT企业版(ChatGPT Business),此版本的ChatGPT将遵循严格开放的数据使用政策,也即默认情况下终端用户的数据不会被用于训练OpenAI的模型。

作者:京东零售 李勇

来源:京东云开发者社区

与GPT-4助力数据分析:提升效率与洞察力的未来关键技术相似的内容:

GPT-4助力数据分析:提升效率与洞察力的未来关键技术

ChatGPT-4作为一种先进的自然语言处理技术,为数据分析带来了革命性的提升,助力企业和组织更高效地挖掘数据价值。本文将探讨ChatGPT-4在数据分析中的应用,以及如何通过该技术提高数据分析的效率和洞察力。

【转帖】GPT4All开源的聊天机器人

GPT4All是一个开源的聊天机器人,它基于LLaMA的大型语言模型训练而成,使用了大量的干净的助手数据,包括代码、故事和对话。它可以在本地运行,不需要云服务或登录,也可以通过Python或Typescript的绑定来使用。它的目标是提供一个类似于GPT-3或GPT-4的语言模型,但是更轻量化和易于

微软开源了一个 助力开发LLM 加持的应用的 工具包 semantic-kernel

在首席执行官萨蒂亚·纳德拉(Satya Nadella)的支持下,微软似乎正在迅速转变为一家以人工智能为中心的公司。最近微软的众多产品线都采用GPT-4加持,从Microsoft 365等商业产品到“新必应”搜索引擎,再到低代码/无代码Power Platform等面向开发的产品,包括软件开发组件P

基于AIGC的京东购物助手的技术方案设想

随着AIGC的爆火,ChatGPT,GPT-4的发布,我作为一个算法工作者,深感AI发展的迅猛。最近,OpenAI的插件和联网功能陆续向用户公开,我也在第一时间试用了这些最新的功能。在OpenAI的插件市场上,我被一个可以帮助分析食谱,并生成购物清单的功能所吸引。

Cursor,程序员的 AI 代码编辑助手

相信大家都或多或少地听说过、了解过 chatGPT ,半个月前发布的 GPT-4 ,可谓是 AI 赛道上的一个王炸 那么今天咸鱼给大家分享一个开源的 AI 代码编辑器——Cursor,让各位程序员在编程之路上一骑绝尘 :) PS:为了完整截图,本篇文章中的图片里文字有点小,请见谅 介绍 Cursor

什么是Token?为什么大模型要计算Token数

本文分享自华为云社区《【技术分享】什么是Token?为什么GPT基于Token定价》,作者:开天aPaaS小助手Tracy。 在使用LLM大模型时,我们经常会遇到一个关键词,叫:Token。 比如: 最新版 GPT-4 Turbo 模型最高支持 128k token 上下文; 曾经 GPT 最强对手

GPT-4多态大模型研究

1.概述 GPT-4是OpenAI最新的系统,能够产生更安全和更有用的回应。它是一个大型的多模态模型(接受图像和文本输入,输出文本),在各种专业和学术的基准测试中展现了人类水平的表现。例如,它在模拟的律师资格考试中得分位于前10%的考生之列;相比之下,GPT-3.5的得分位于后10%。 GPT-4是

GPT-4 来了!这些开源的 GPT 应用又要变强了

近日,在 GPT-3.5 发布的半年后,OpenAI 正式推出了大版本的 GPT-4,不同于 GPT-3 到 GPT-3.5 耗时两年,这次版本升级只用了半年。如果你对 OpenAI 不熟悉,答应我读下这篇《ChatGPT 会开源吗?》 ,它详细介绍了 OpenAI 这家公司及其产品。 为了让你快速

【GPT-4理论篇-1】GPT-4核心技术探秘

在本文中,我将结合GPT-4的技术报告、GPT-4相对于GPT 3.5/ChatGPT的提升、GPT-4和ChatGPT的对比、OpenAI的近期工作,大语言模型(Large Language Model,LLM)模型的科研进展,多模态模型的科研进展等多方面的信息,深入分析GPT-4的技术细节。

在GPT-4时代使用Semantic Kernel构建AI Copilot问答 以及 Semantic Kernel文档更新

Semantic Kernel是一个开源SDK,可让您轻松地将OpenAI,Azure OpenAI和Hugging Face等AI服务与C#和Python等传统编程语言相结合。通过这样做,您可以创建结合两全其美的 AI 应用程序。 Semantic Kernel 团队在博客上发布了2篇文章:Sem