【matplotlib基础】--画布

matplotlib,基础,画布 · 浏览次数 : 170

小编点评

**主要元素介绍** * **画布**: 画布是其他所有元素的载体,它可以设置图形的大小、颜色、位置等。 * **标题**: 设置图表的标题,可以设置主标题和子图标题。 * **坐标轴**: 设置x和y轴的标签、刻度等。 * **子图**: 可以使用 add_subplot() 方法创建多个子图并绘制图形。 * **边框**: 可以设置边框颜色和宽度。 * **背景色**: 设置图形背景颜色。 * **方法**: 可以设置标题、子图标题、坐标轴、边框等。 **画布设置** * **figsize**: 设置图形的尺寸,以英寸为单位。 * **dpi**: 设置画布的像素分辨率,每英寸有多少像素。 * **背景色**: 设置图形背景颜色。 * **边框颜色**: 设置边框颜色。 * **边框宽度**: 设置边框的宽度。 * **标题**: 设置图表的标题。

正文

Matplotlib 库是一个用于数据可视化和绘图的 Python 库。
它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。

使用 Matplotlib 的过程中,遇到的难点并不在于绘制各类的图形,因为每种图形都有其对应的API。
难点在于对绘制的图形进行调整,这些调整包括:

  1. 图形的大小
  2. 多个图形的组合
  3. 坐标轴的方向,刻度的精度
  4. 图形的颜色和字体

等等。

进行这些调整需要对 Matplotlib 的绘图机制和其中的主要元素有个整体的了解。
本篇首先整体介绍下Matplotlib绘制的图形中的主要元素,然后重点介绍下其中第一个重要的元素--画布

1. 主要元素

下面绘制一个简单的图形来演示Matplotlib绘图时的主要元素。

import numpy as np

import matplotlib
import matplotlib.pyplot as plt

%matplotlib inline

#绘制一个展示主要元素的图
x = np.array(range(0, 8))
y1 = np.sin(x)

fig = plt.figure()
fig.set_size_inches(10,4)
fig.set_facecolor('lightgreen')
fig.suptitle("整个图形的总标题")
fig.subplots_adjust(wspace=0.3)

ax1 = fig.add_subplot(121)
ax1.plot(x, y1)
ax1.set_title("图1 标题")
ax1.set_xlabel("图1--x轴")
ax1.set_ylabel("图1--y轴")

ax2 = fig.add_subplot(122)
y2 = np.cos(x)
ax2.plot(x, y1)
ax2.plot(x, y2)
ax2.set_title("图2 标题")
ax2.set_xlabel("图2--x轴")
ax2.set_ylabel("图2--y轴")
ax2.legend(labels=["sin", "cos"])

fig.show()

image.png
上例中,我们绘制了2个子图。
主要的元素包括,图形的大小,图形的标题(主标题和子图标题),坐标轴(轴标签和刻度),图例,子图中曲线(这里可以根据情况换成其他图形,比如柱状图,散点图等等)。

上面的示例代码不用太关心,这里只是为了显示Matplotlib的主要元素。
后续的文章会介绍各个主要元素的常用属性,最终的目的是能够灵活的绘制出符合显示要求的图形,而不仅仅只是绘制出图形。

本篇介绍的主要元素是画布

2. 画布

画布是其他所有的元素的载体,可以说是最重要,也是最容易被忽视的元素。
绘制图形之前,第一件事就是创建画布

2.1. 主要属性

创建画布之后,一般主要用到的属性是调整画布的大小颜色
Matplotlib画布的大小通过设置英寸和dpi来实现,dpi表示一英寸有多少像素。

2.1.1. 画布大小

比如下面的示例:

fig = plt.figure(figsize=[6, 3], dpi=100)
fig.suptitle("标题")
x = np.array(range(0, 8))
y = np.sin(x)
plt.plot(x, y)

image.png

修改dpi=200,图形明显变大和清晰。

fig = plt.figure(figsize=[6, 3], dpi=200)

image.png

2.1.2. 画布颜色

除了大小,设置画布颜色也是比较常用的。
颜色主要有两种,背景色和边框颜色(默认的边框宽度是0,所以要设置边框颜色时,别忘了设置边框的宽度)。
比如:下面示例设置了背景色浅绿色,边框宽度10,颜色红色

fig = plt.figure(facecolor="lightgreen",
                edgecolor="red",
                linewidth=10)
fig.suptitle("标题")
x = np.array(range(0, 8))
y = np.sin(x)
plt.plot(x, y)

image.png

2.2. 主要方法

除了属性,画布还有几个方法也是经常使用的。

2.2.1. 设置标题

上面的示例中已经包含了,也就是 suptitle() 方法。

2.2.2. 添加子图

添加子图用 add_subplot() 方法,这个方法的参数一般是三个数组 xyz
x表示有几行,y表示有几列,z表示是第一个子图。
比如:一行两列2个图

fig = plt.figure()

fig.add_subplot(121)
fig.add_subplot(122)

image.png

比如:2行一列2个图:

fig = plt.figure()

fig.add_subplot(211)
fig.add_subplot(212)

image.png

比如:2行2列4个图:

fig = plt.figure()

fig.add_subplot(221)
fig.add_subplot(222)
fig.add_subplot(223)
fig.add_subplot(224)

image.png

2.2.3. 保存图像

画布还有个重要的功能就是把显示的图形保存下来,即 savefig() 方法。
可以把绘制的图形保存到磁盘,用于分享或者制作报告。

fig.savefig("d:/share/image.png")

3. 总结回顾

画布让我们可以整体上设置图形的质量和排版,分析和作图过程中虽然不用过多考虑它,但是最终如果要出报告和文档时,画布的设置就会变得重要。

画布是绘图的第一步,接下来这个系列会逐步介绍 Matplotlib的其他主要元素。

与【matplotlib基础】--画布相似的内容:

【matplotlib基础】--画布

Matplotlib 库是一个用于数据可视化和绘图的 Python 库。它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 使用 Matplotlib 的过程中,遇到的难点并不在于绘制各类的图形,因为每种图形都有其对应的API。难点在于

【matplotlib基础】--几何图形

除了绘制各类分析图形(比如柱状图,折线图,饼图等等)以外,matplotlib 也可以在画布上任意绘制各类几何图形。这对于计算机图形学、几何算法和计算机辅助设计等领域非常重要。 matplitlib 中的 patches 类提供了丰富的几何对象,本篇抛砖引玉,介绍其中几种常用的几何图形绘制方法。 其

【matplotlib 基础】--目录(完结)

Matplotlib 库是一个用于数据可视化和绘图的 Python 库。 它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 本系列具体内容包括: 画布 画布是其他所有的元素的载体,可以说是最重要,也是最容易被忽视的元素。 绘制图形之前

【matplotlib基础】--子图

使用Matplotlib对分析结果可视化时,比较各类分析结果是常见的场景。在这类场景之下,将多个分析结果绘制在一张图上,可以帮助用户方便地组合和分析多个数据集,提高数据可视化的效率和准确性。 本篇介绍Matplotlib绘制子图的常用方式和技巧。 1. 添加子图的方式 添加子图主要有两种方式,一种是

【matplotlib基础】--动画

matplotlib的动画一直是一个强大但使用频率不高的功能,究其原因,一方面展示动画需要一定的媒介,没有图形和文字展示方便;二来大家更关心的是分析结果的最终图表,图表的动态展示则没有那么重要。 不过,随着短视频的兴起,在短视频平台上展示动画变得非常容易,所以,我们发现有越来越多的数据分析动画(比如

【matplotlib基础】--坐标轴

Matplotlib的坐标轴是用于在绘图中表示数据的位置的工具。 坐标轴是图像中的水平和垂直线,它们通常表示为 x 轴和 y 轴。坐标轴的作用是帮助观察者了解图像中数据的位置和大小,通常标有数字或标签,以指示特定的值在图像中的位置。 1. 坐标轴范围 Matplotlib绘制图形时,会自动根据X,Y

【matplotlib基础】--刻度

Matplotlib中刻度是用于在绘图中表示数据大小的工具。 刻度是坐标轴上的数字或标签,用于指示数据的大小或值,通常以整数或小数表示,具体取决于坐标轴的类型和限制。 1. 主次刻度 默认的绘制时,坐标轴只有默认的主要刻度,如下所示: from matplotlib.ticker import Mu

【matplotlib基础】--图例

Matplotlib 中的图例是帮助观察者理解图像数据的重要工具。图例通常包含在图像中,用于解释不同的颜色、形状、标签和其他元素。 1. 主要参数 当不设置图例的参数时,默认的图例是这样的。 import numpy as np import matplotlib.pyplot as plt x =

【matplotlib基础】--文本标注

Matplotlib 文本和标注可以为数据和图形之间提供额外的信息,帮助观察者更好地理解数据和图形的含义。 文本用于在图形中添加注释或提供更详细的信息,以帮助观察者理解图形的含义。标注则是一种更加细粒度的文本信息,可以被用来为特定的数据点或区域提供更详细的信息。 本篇通过示例依次介绍文本和标注的常用

【matplotlib基础】--绘图配置

Matplotlib 提供了大量配置参数,这些参数可以但不限于让我们从整体上调整通过 Matplotlib 绘制的图形样式,这里面的参数还有很多是功能性的,和其他工具结合时需要用的配置。 通过plt.rcParams,可以查看所有的配置信息: import matplotlib.pyplot as