【matplotlib基础】--图例

matplotlib,基础,图例 · 浏览次数 : 185

小编点评

**主要参数设置:** * **loc:**图例位置,字符串类型。默认值为 `'upper left'`。 * **facecolor:**边框背景色,字符串类型。默认值为 `'lightgray'`。 * **edgecolor:**边框颜色,字符串类型。默认值为 `'black'`。 * **shadow:**是否设置阴影。默认值为 `True`。 * **frameon:**是否设置边框和背景。默认值为 `True`。 * **ncol:**列数,默认值为 1。 **示例设置:** ```python fig, ax = plt.subplots(3, 3) ax[i, j].plot(x, y1, label=\"sin\") ax[i, j].plot(x, y2, label=\"cos\") # 设置图例位置 ax[0, 1].legend(loc="upper center", ncol=2) # 设置图例边框 ax[0, 0].plot(x, y1, label="sin1", facecolor="lightblue", edgecolor="red", shadow=True) ax[1, 0].plot(x, y2, label="cos1", facecolor="lightblue", edgecolor="red", shadow=True) # 设置图例大小 fig.set_size_inches(10, 10) # 显示图例 plt.show() ``` **其他设置:** * **legend:**设置图例位置和大小。 * **scatterpoints:**设置点的大小比例。 * **alpha:**设置点的大小透明度。

正文

Matplotlib 中的图例是帮助观察者理解图像数据的重要工具。
图例通常包含在图像中,用于解释不同的颜色、形状、标签和其他元素。

1. 主要参数

当不设置图例的参数时,默认的图例是这样的。

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend()

image.png

图例就是右上角的那个部分。
图例的主要参数,其实也就是上例 ax.lengend() 函数的主要参数:

  1. 图例位置相关:loc (位置字符串)
  2. 边框相关:facecolor(背景色),edgecolor(边框颜色),shadow(是否设置阴影)framemon(是否有边框和背景)
  3. 图例的列数:默认是1列多行的格式,ncol(列的个数)

2. 配置示例

通过示例来演示常用的设置。

2.1. 图例位置

fig, ax = plt.subplots(3, 3)
fig.set_size_inches(10, 10)

locations = [
    ["lower left", "lower center", "lower right"],
    ["center left", "center", "center right"],
    ["upper left", "upper center", "upper right"],
]
for i in range(3):
    for j in range(3):
        ax[i, j].plot(x, y1, label="sin")
        ax[i, j].plot(x, y2, label="cos")
        ax[i, j].legend(loc=locations[i][j])

image.png

上面的示例显示了不同位置的图例。

2.2. 图例边框

边框可以设置边框的背景色,边框颜色和是否有阴影。

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend(facecolor="lightblue", edgecolor="red", shadow=True)

image.png

上例中,背景色 lightblue,边框 red,阴影设置为 True

设置无边框比较简单,frameon=False 即可。

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend(frameon=False)

image.png

2.3. 图例分列

图例默认都是一列多行的格式,比如上面的的各个示例,图例都是依次竖着排列下来的。
可以通过 ncol 属性,让图例横着排列。

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend(frameon=False, loc="upper center", ncol=2)

image.png

上面的示例,图例(legend)设置为两列,位于上方中间位置。

2.4. 多个图例

一般的图形都只有一个图例,比如上面的都是这样的,sincos都在一个图例中。
如果图例太多,或者多个图例之间关系不大,也可以创建多个图例。

from matplotlib.legend import Legend

x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.sin(x + 1)
y4 = np.cos(x + 1)

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
legends = []
legends += ax.plot(x, y1, label="sin1")
legends += ax.plot(x, y2, label="cos1")
legends += ax.plot(x, y3, label="sin2")
legends += ax.plot(x, y4, label="cos2")
ax.legend(legends[:2], ["sin1", "cos1"], loc="upper right")

leg = Legend(ax, legends[2:], ["sin2", "cos2"], loc="lower left")
ax.add_artist(leg)

image.png

上面的示例中的4个曲线,分成了2个图例来说明。
一个图例在右上角,一个图例在左下角。

2.5. 图例中不同大小的点

最后,介绍一种更复杂的图例显示方式。

首先生成主要几个省市的人口散点图(数据是网络上搜索的),
生成图例的时候,给3个主要的节点500万人,5000万人,1亿人设置的点的大小比例与图中的各个散点数据保持一致。

x = ["广东", "山东", "江苏", 
     "湖北", "浙江", "吉林", 
     "甘肃", "宁夏", "青海", "西藏"]
y = np.array([10432, 9578, 7866, 
              5723, 5442, 2745,
              2557, 630, 562, 300])

fig = plt.figure(figsize=[10, 8])
plt.scatter(x, y, c=np.log10(y), s=y/16)

#创建图例
for population in [500, 5000, 10000]:
    plt.scatter([],[], c='b', 
                s=population/16, 
                alpha=0.3, 
                label=str(population)+" (万人)")

plt.legend(scatterpoints=1, 
           labelspacing=1.5, 
           title="人口图例",
           frameon=False)

image.png

3. 总结

图例可以设置成各式各样,本篇介绍的图例设置方式并不是仅仅为了美观,
更重要的是利用这些设置方式帮助用户能够达成以下目的:

  1. 帮助观察者快速了解图像数据:图例提供了关于图像数据的简洁、易于理解的解释,使得观察者能够快速了解图像的主题和内容。
  2. 帮助观察者更好地理解图像细节:在一些复杂的图像中,观察者可能需要花费很多时间才能理解其中的细节。图例可以提供关于图像细节的额外信息,使得观察者能够更好地理解图像。
  3. 帮助观察者发现图像中的异常或者重要信息:图例可以用于指出图像中的异常或者重要信息,帮助观察者更好地理解和分析图像。

与【matplotlib基础】--图例相似的内容:

【matplotlib基础】--图例

Matplotlib 中的图例是帮助观察者理解图像数据的重要工具。图例通常包含在图像中,用于解释不同的颜色、形状、标签和其他元素。 1. 主要参数 当不设置图例的参数时,默认的图例是这样的。 import numpy as np import matplotlib.pyplot as plt x =

【matplotlib基础】--子图

使用Matplotlib对分析结果可视化时,比较各类分析结果是常见的场景。在这类场景之下,将多个分析结果绘制在一张图上,可以帮助用户方便地组合和分析多个数据集,提高数据可视化的效率和准确性。 本篇介绍Matplotlib绘制子图的常用方式和技巧。 1. 添加子图的方式 添加子图主要有两种方式,一种是

【matplotlib基础】--3D图形

matplotlib 在1.0版本之前其实是不支持3D图形绘制的。 后来的版本中,matplotlib加入了3D图形的支持,不仅仅是为了使数据的展示更加生动和有趣。更重要的是,由于多了一个维度,扩展了其展示数据分布和关系的能力,可以一次从三个维度来比较数据。 下面介绍在matplotlib中绘制各类

【matplotlib基础】--几何图形

除了绘制各类分析图形(比如柱状图,折线图,饼图等等)以外,matplotlib 也可以在画布上任意绘制各类几何图形。这对于计算机图形学、几何算法和计算机辅助设计等领域非常重要。 matplitlib 中的 patches 类提供了丰富的几何对象,本篇抛砖引玉,介绍其中几种常用的几何图形绘制方法。 其

【matplotlib基础】--文本标注

Matplotlib 文本和标注可以为数据和图形之间提供额外的信息,帮助观察者更好地理解数据和图形的含义。 文本用于在图形中添加注释或提供更详细的信息,以帮助观察者理解图形的含义。标注则是一种更加细粒度的文本信息,可以被用来为特定的数据点或区域提供更详细的信息。 本篇通过示例依次介绍文本和标注的常用

【matplotlib基础】--动画

matplotlib的动画一直是一个强大但使用频率不高的功能,究其原因,一方面展示动画需要一定的媒介,没有图形和文字展示方便;二来大家更关心的是分析结果的最终图表,图表的动态展示则没有那么重要。 不过,随着短视频的兴起,在短视频平台上展示动画变得非常容易,所以,我们发现有越来越多的数据分析动画(比如

【matplotlib基础】--坐标轴

Matplotlib的坐标轴是用于在绘图中表示数据的位置的工具。 坐标轴是图像中的水平和垂直线,它们通常表示为 x 轴和 y 轴。坐标轴的作用是帮助观察者了解图像中数据的位置和大小,通常标有数字或标签,以指示特定的值在图像中的位置。 1. 坐标轴范围 Matplotlib绘制图形时,会自动根据X,Y

【matplotlib基础】--绘图配置

Matplotlib 提供了大量配置参数,这些参数可以但不限于让我们从整体上调整通过 Matplotlib 绘制的图形样式,这里面的参数还有很多是功能性的,和其他工具结合时需要用的配置。 通过plt.rcParams,可以查看所有的配置信息: import matplotlib.pyplot as

【matplotlib基础】--画布

Matplotlib 库是一个用于数据可视化和绘图的 Python 库。它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 使用 Matplotlib 的过程中,遇到的难点并不在于绘制各类的图形,因为每种图形都有其对应的API。难点在于

【matplotlib基础】--样式表

Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方。 不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,通过使用不同的样式表,可以整体改变绘制图形的风格,不用再调整一个个显示参数。 1. 样式表的使用 1.1. 所有内