驱动开发:通过应用堆实现多次通信

驱动,开发,通过,应用,实现,多次,通信 · 浏览次数 : 203

小编点评

**代码摘要** 该代码实现循环传递参数,使用l3数据结构体来存储参数,并通过l3驱动控制程序来实现参数传递。 **主要代码** * **GetAppPath**函数用于获取应用程序路径。 * **DriveControl**类用于管理驱动程序。 * **IOControl**函数用于应用层数据结构体数据。 * **HeapFree**函数用于释放内存。 **主要变量** * **m_dwLastError**:用于记录驱动程序错误代码。 * **m_pSysPath**:用于存储应用程序路径。 * **m_pServiceName**:用于存储驱动程序名称。 * **m_hDriver**:用于驱动程序的句柄。 * **m_hSCManager**:用于管理驱动程序。 * **m_hService**:用于驱动程序。 **主要函数** * **main**函数用于实现循环传递参数。 **其他** * 代码中使用了大量的l3数据结构体,这有助于优化数据访问效率。 * 代码中使用了驱动控制程序,这有助于实现参数传递的效率。

正文

在前面的文章《驱动开发:运用MDL映射实现多次通信》LyShark教大家使用MDL的方式灵活的实现了内核态多次输出结构体的效果,但是此种方法并不推荐大家使用原因很简单首先内核空间比较宝贵,其次内核里面不能分配太大且每次传出的结构体最大不能超过1024个,而最终这些内存由于无法得到更好的释放从而导致坏堆的产生,这样的程序显然是无法在生产环境中使用的,如下LyShark将教大家通过在应用层申请空间来实现同等效果,此类传递方式也是多数ARK反内核工具中最常采用的一种。

与MDL映射相反,MDL多数处理流程在内核代码中,而应用层开堆复杂代码则在应用层,但内核层中同样还是需要使用指针,只是这里的指针仅仅只是保留基本要素即可,通过EnumProcess()模拟枚举进程操作,传入的是PPROCESS_INFO进程指针转换,将数据传入到PPROCESS_INFO直接返回进程计数器即可。

// -------------------------------------------------
// R3传输结构体
// -------------------------------------------------

// 进程指针转换
typedef struct
{
  DWORD PID;
  DWORD PPID;
}PROCESS_INFO, *PPROCESS_INFO;

// 数据存储指针
typedef struct
{
  ULONG_PTR nSize;
  PVOID BufferPtr;
}BufferPointer, *pBufferPointer;

// 模拟进程枚举
ULONG EnumProcess(PPROCESS_INFO pBuffer)
{
  ULONG nCount = 0;

  for (size_t i = 0; i < 10; i++)
  {
    pBuffer[i].PID = nCount * 2;
    pBuffer[i].PPID = nCount * 4;

    nCount = nCount + 1;
  }
  return nCount;
}

内核层核心代码: 内核代码中是如何通信的,首先从用户态接收pIoBuffer到分配的缓冲区数据,并转换为pBufferPointer结构,ProbeForWrite用于检查地址是否可写入,接着会调用EnumProcess()注意传入的其实是应用层的指针,枚举进程结束后,将进程数量nCount通过*(PULONG)pIrp->AssociatedIrp.SystemBuffer = (ULONG)nCount回传给应用层,至此内核中仅仅回传了一个长度,其他的都写入到了应用层中。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

pBufferPointer pinp = (pBufferPointer)pIoBuffer;

__try
{
  DbgPrint("缓冲区长度: %d \n", pinp->nSize);
  DbgPrint("缓冲区基地址: %p \n", pinp->BufferPtr);

  // 检查地址是否可写入
  ProbeForWrite(pinp->BufferPtr, pinp->nSize, 1);

  ULONG nCount = EnumProcess((PPROCESS_INFO)pinp->BufferPtr);
  DbgPrint("进程计数 = %d \n", nCount);
  if (nCount > 0)
  {
    // 将进程数返回给用户
    *(PULONG)pIrp->AssociatedIrp.SystemBuffer = (ULONG)nCount;
    status = STATUS_SUCCESS;
  }
}
__except (1)
{
  status = GetExceptionCode();
  DbgPrint("IOCTL_GET_EPROCESS %x \n", status);
}

// 返回通信状态
status = STATUS_SUCCESS;
break;

应用层核心代码: 通信的重点在于应用层,首先定义BufferPointer用于存放缓冲区头部指针,定义PPROCESS_INFO则是用于后期将数据放入该容器内,函数HeapAlloc分配一段堆空间,并HEAP_ZERO_MEMORY将该堆空间全部填空,将这一段初始化后的空间放入到pInput.BufferPtr缓冲区内,并计算出长度放入到pInput.nSize缓冲区内,一切准备就绪之后,再通过DriveControl.IoControlBufferPointer结构传输至内核中,而bRet则是用于接收返回长度的变量。

当收到数据后,通过(PPROCESS_INFO)pInput.BufferPtr强制转换为指针类型,并依次pProcessInfo[i]读出每一个节点的元素,最后是调用HeapFree释放掉这段堆空间。至于输出就很简单了vectorProcess[x].PID循环容器元素即可。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

// 应用层数据结构体数据
BOOL bRet = FALSE;
BufferPointer pInput = { 0 };
PPROCESS_INFO pProcessInfo = NULL;

// 分配堆空间
pInput.BufferPtr = (PVOID)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(PROCESS_INFO) * 1000);
pInput.nSize = sizeof(PROCESS_INFO) * 1000;

ULONG nRet = 0;

if (pInput.BufferPtr)
{
  bRet = DriveControl.IoControl(IOCTL_IO_R3StructAll, &pInput, sizeof(BufferPointer), &nRet, sizeof(ULONG), 0);
}

std::cout << "返回结构体数量: " << nRet << std::endl;

if (bRet && nRet > 0)
{
  pProcessInfo = (PPROCESS_INFO)pInput.BufferPtr;
  std::vector<PROCESS_INFO> vectorProcess;

  for (ULONG i = 0; i < nRet; i++)
  {
    vectorProcess.push_back(pProcessInfo[i]);
  }

  // 释放空间
  bRet = HeapFree(GetProcessHeap(), 0, pInput.BufferPtr);
  std::cout << "释放状态: " << bRet << std::endl;

  // 输出容器内的进程ID列表
  for (int x = 0; x < nRet; x++)
  {
    std::cout << "PID: " << vectorProcess[x].PID << " PPID: " << vectorProcess[x].PPID << std::endl;
  }
}

// 关闭符号链接句柄
CloseHandle(DriveControl.m_hDriver);

如上就是内核层与应用层的部分代码功能分析,接下来我将完整代码分享出来,大家可以自行测试效果。

驱动程序WinDDK.sys完整代码;

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#define _CRT_SECURE_NO_WARNINGS
#include <ntifs.h>
#include <windef.h>

// 定义符号链接,一般来说修改为驱动的名字即可
#define DEVICE_NAME        L"\\Device\\WinDDK"
#define LINK_NAME          L"\\DosDevices\\WinDDK"
#define LINK_GLOBAL_NAME   L"\\DosDevices\\Global\\WinDDK"

// 定义驱动功能号和名字,提供接口给应用程序调用
#define IOCTL_IO_R3StructAll    CTL_CODE(FILE_DEVICE_UNKNOWN, 0x806, METHOD_BUFFERED, FILE_ANY_ACCESS)

// 保存一段非分页内存,用于给全局变量使用
#define FILE_DEVICE_EXTENSION 4096

// -------------------------------------------------
// R3传输结构体
// -------------------------------------------------

// 进程指针转换
typedef struct
{
	DWORD PID;
	DWORD PPID;
}PROCESS_INFO, *PPROCESS_INFO;

// 数据存储指针
typedef struct
{
	ULONG_PTR nSize;
	PVOID BufferPtr;
}BufferPointer, *pBufferPointer;

// 模拟进程枚举
ULONG EnumProcess(PPROCESS_INFO pBuffer)
{
	ULONG nCount = 0;

	for (size_t i = 0; i < 10; i++)
	{
		pBuffer[i].PID = nCount * 2;
		pBuffer[i].PPID = nCount * 4;

		nCount = nCount + 1;
	}
	return nCount;
}

// 驱动绑定默认派遣函数
NTSTATUS DefaultDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp)
{
	_pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED;
	_pIrp->IoStatus.Information = 0;
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return _pIrp->IoStatus.Status;
}

// 驱动卸载的处理例程
VOID DriverUnload(PDRIVER_OBJECT pDriverObj)
{
	if (pDriverObj->DeviceObject)
	{
		UNICODE_STRING strLink;

		// 删除符号连接和设备
		RtlInitUnicodeString(&strLink, LINK_NAME);
		IoDeleteSymbolicLink(&strLink);
		IoDeleteDevice(pDriverObj->DeviceObject);
		DbgPrint("[kernel] # 驱动已卸载 \n");
	}
}

// IRP_MJ_CREATE 对应的处理例程,一般不用管它
NTSTATUS DispatchCreate(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
	DbgPrint("[kernel] # 驱动处理例程载入 \n");
	pIrp->IoStatus.Status = STATUS_SUCCESS;
	pIrp->IoStatus.Information = 0;
	IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	return STATUS_SUCCESS;
}

// IRP_MJ_CLOSE 对应的处理例程,一般不用管它
NTSTATUS DispatchClose(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
	DbgPrint("[kernel] # 关闭派遣 \n");
	pIrp->IoStatus.Status = STATUS_SUCCESS;
	pIrp->IoStatus.Information = 0;
	IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	return STATUS_SUCCESS;
}

// IRP_MJ_DEVICE_CONTROL 对应的处理例程,驱动最重要的函数
NTSTATUS DispatchIoctl(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
	NTSTATUS status = STATUS_INVALID_DEVICE_REQUEST;
	PIO_STACK_LOCATION pIrpStack;
	ULONG uIoControlCode;
	PVOID pIoBuffer;
	ULONG uInSize;
	ULONG uOutSize;

	// 获得IRP里的关键数据
	pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

	// 获取控制码
	uIoControlCode = pIrpStack->Parameters.DeviceIoControl.IoControlCode;

	// 输入和输出的缓冲区(DeviceIoControl的InBuffer和OutBuffer都是它)
	pIoBuffer = pIrp->AssociatedIrp.SystemBuffer;

	// EXE发送传入数据的BUFFER长度(DeviceIoControl的nInBufferSize)
	uInSize = pIrpStack->Parameters.DeviceIoControl.InputBufferLength;

	// EXE接收传出数据的BUFFER长度(DeviceIoControl的nOutBufferSize)
	uOutSize = pIrpStack->Parameters.DeviceIoControl.OutputBufferLength;

	// 对不同控制信号的处理流程
	switch (uIoControlCode)
	{
	// 测试R3传输多次结构体
	case IOCTL_IO_R3StructAll:
	{
		pBufferPointer pinp = (pBufferPointer)pIoBuffer;

		__try
		{
			DbgPrint("[lyshark] 缓冲区长度: %d \n", pinp->nSize);
			DbgPrint("[lyshark] 缓冲区基地址: %p \n", pinp->BufferPtr);

			// 检查地址是否可写入
			ProbeForWrite(pinp->BufferPtr, pinp->nSize, 1);

			ULONG nCount = EnumProcess((PPROCESS_INFO)pinp->BufferPtr);
			DbgPrint("[lyshark.com] 进程计数 = %d \n", nCount);
			if (nCount > 0)
			{
				// 将进程数返回给用户
				*(PULONG)pIrp->AssociatedIrp.SystemBuffer = (ULONG)nCount;
				status = STATUS_SUCCESS;
			}
		}
		__except (1)
		{
			status = GetExceptionCode();
			DbgPrint("IOCTL_GET_EPROCESS %x \n", status);
		}

		// 返回通信状态
		status = STATUS_SUCCESS;
		break;
	}
	}

	// 设定DeviceIoControl的*lpBytesReturned的值(如果通信失败则返回0长度)
	if (status == STATUS_SUCCESS)
	{
		pIrp->IoStatus.Information = uOutSize;
	}
	else
	{
		pIrp->IoStatus.Information = 0;
	}

	// 设定DeviceIoControl的返回值是成功还是失败
	pIrp->IoStatus.Status = status;
	IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	return status;
}

// 驱动的初始化工作
NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObj, PUNICODE_STRING pRegistryString)
{
	NTSTATUS status = STATUS_SUCCESS;
	UNICODE_STRING ustrLinkName;
	UNICODE_STRING ustrDevName;
	PDEVICE_OBJECT pDevObj;

	// 初始化其他派遣
	for (ULONG i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i++)
	{
		// DbgPrint("初始化派遣: %d \n", i);
		pDriverObj->MajorFunction[i] = DefaultDispatch;
	}

	// 设置分发函数和卸载例程
	pDriverObj->MajorFunction[IRP_MJ_CREATE] = DispatchCreate;
	pDriverObj->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;
	pDriverObj->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DispatchIoctl;
	pDriverObj->DriverUnload = DriverUnload;

	// 创建一个设备
	RtlInitUnicodeString(&ustrDevName, DEVICE_NAME);

	// FILE_DEVICE_EXTENSION 创建设备时,指定设备扩展内存的大小,传一个值进去,就会给设备分配一块非页面内存。
	status = IoCreateDevice(pDriverObj, sizeof(FILE_DEVICE_EXTENSION), &ustrDevName, FILE_DEVICE_UNKNOWN, 0, FALSE, &pDevObj);
	if (!NT_SUCCESS(status))
	{
		return status;
	}

	// 判断支持的WDM版本,其实这个已经不需要了,纯属WIN9X和WINNT并存时代的残留物
	if (IoIsWdmVersionAvailable(1, 0x10))
	{
		RtlInitUnicodeString(&ustrLinkName, LINK_GLOBAL_NAME);
	}
	else
	{
		RtlInitUnicodeString(&ustrLinkName, LINK_NAME);
	}

	// 创建符号连接
	status = IoCreateSymbolicLink(&ustrLinkName, &ustrDevName);
	if (!NT_SUCCESS(status))
	{
		DbgPrint("创建符号链接失败 \n");
		IoDeleteDevice(pDevObj);
		return status;
	}
	DbgPrint("[hello LyShark.com] # 驱动初始化完毕 \n");

	// 返回加载驱动的状态(如果返回失败,驱动讲被清除出内核空间)
	return STATUS_SUCCESS;
}

应用层客户端程序lyshark.exe完整代码;

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#include <iostream>
#include <Windows.h>
#include <vector>

#pragma comment(lib,"user32.lib")
#pragma comment(lib,"advapi32.lib")

// 定义驱动功能号和名字,提供接口给应用程序调用
#define IOCTL_IO_R3StructAll    0x806

class cDrvCtrl
{
public:
	cDrvCtrl()
	{
		m_pSysPath = NULL;
		m_pServiceName = NULL;
		m_pDisplayName = NULL;
		m_hSCManager = NULL;
		m_hService = NULL;
		m_hDriver = INVALID_HANDLE_VALUE;
	}
	~cDrvCtrl()
	{
		CloseServiceHandle(m_hService);
		CloseServiceHandle(m_hSCManager);
		CloseHandle(m_hDriver);
	}

	// 安装驱动
	BOOL Install(PCHAR pSysPath, PCHAR pServiceName, PCHAR pDisplayName)
	{
		m_pSysPath = pSysPath;
		m_pServiceName = pServiceName;
		m_pDisplayName = pDisplayName;
		m_hSCManager = OpenSCManagerA(NULL, NULL, SC_MANAGER_ALL_ACCESS);
		if (NULL == m_hSCManager)
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		m_hService = CreateServiceA(m_hSCManager, m_pServiceName, m_pDisplayName,
			SERVICE_ALL_ACCESS, SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START, SERVICE_ERROR_NORMAL,
			m_pSysPath, NULL, NULL, NULL, NULL, NULL);
		if (NULL == m_hService)
		{
			m_dwLastError = GetLastError();
			if (ERROR_SERVICE_EXISTS == m_dwLastError)
			{
				m_hService = OpenServiceA(m_hSCManager, m_pServiceName, SERVICE_ALL_ACCESS);
				if (NULL == m_hService)
				{
					CloseServiceHandle(m_hSCManager);
					return FALSE;
				}
			}
			else
			{
				CloseServiceHandle(m_hSCManager);
				return FALSE;
			}
		}
		return TRUE;
	}

	// 启动驱动
	BOOL Start()
	{
		if (!StartServiceA(m_hService, NULL, NULL))
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		return TRUE;
	}

	// 关闭驱动
	BOOL Stop()
	{
		SERVICE_STATUS ss;
		GetSvcHandle(m_pServiceName);
		if (!ControlService(m_hService, SERVICE_CONTROL_STOP, &ss))
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		return TRUE;
	}

	// 移除驱动
	BOOL Remove()
	{
		GetSvcHandle(m_pServiceName);
		if (!DeleteService(m_hService))
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		return TRUE;
	}

	// 打开驱动
	BOOL Open(PCHAR pLinkName)
	{
		if (m_hDriver != INVALID_HANDLE_VALUE)
			return TRUE;
		m_hDriver = CreateFileA(pLinkName, GENERIC_READ | GENERIC_WRITE, 0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
		if (m_hDriver != INVALID_HANDLE_VALUE)
			return TRUE;
		else
			return FALSE;
	}

	// 发送控制信号
	BOOL IoControl(DWORD dwIoCode, PVOID InBuff, DWORD InBuffLen, PVOID OutBuff, DWORD OutBuffLen, DWORD *RealRetBytes)
	{
		DWORD dw;
		BOOL b = DeviceIoControl(m_hDriver, CTL_CODE_GEN(dwIoCode), InBuff, InBuffLen, OutBuff, OutBuffLen, &dw, NULL);
		if (RealRetBytes)
			*RealRetBytes = dw;
		return b;
	}
private:

	// 获取服务句柄
	BOOL GetSvcHandle(PCHAR pServiceName)
	{
		m_pServiceName = pServiceName;
		m_hSCManager = OpenSCManagerA(NULL, NULL, SC_MANAGER_ALL_ACCESS);
		if (NULL == m_hSCManager)
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		m_hService = OpenServiceA(m_hSCManager, m_pServiceName, SERVICE_ALL_ACCESS);
		if (NULL == m_hService)
		{
			CloseServiceHandle(m_hSCManager);
			return FALSE;
		}
		else
		{
			return TRUE;
		}
	}

	// 获取控制信号对应字符串
	DWORD CTL_CODE_GEN(DWORD lngFunction)
	{
		return (FILE_DEVICE_UNKNOWN * 65536) | (FILE_ANY_ACCESS * 16384) | (lngFunction * 4) | METHOD_BUFFERED;
	}

public:
	DWORD m_dwLastError;
	PCHAR m_pSysPath;
	PCHAR m_pServiceName;
	PCHAR m_pDisplayName;
	HANDLE m_hDriver;
	SC_HANDLE m_hSCManager;
	SC_HANDLE m_hService;
};

void GetAppPath(char *szCurFile)
{
	GetModuleFileNameA(0, szCurFile, MAX_PATH);
	for (SIZE_T i = strlen(szCurFile) - 1; i >= 0; i--)
	{
		if (szCurFile[i] == '\\')
		{
			szCurFile[i + 1] = '\0';
			break;
		}
	}
}

// -------------------------------------------------
// R3数据传递变量
// -------------------------------------------------
// 进程指针转换
typedef struct
{
	DWORD PID;
	DWORD PPID;
}PROCESS_INFO, *PPROCESS_INFO;

// 数据存储指针
typedef struct
{
	ULONG_PTR nSize;
	PVOID BufferPtr;
}BufferPointer, *pBufferPointer;

int main(int argc, char *argv[])
{
	cDrvCtrl DriveControl;

	// 设置驱动名称
	char szSysFile[MAX_PATH] = { 0 };
	char szSvcLnkName[] = "WinDDK";;
	GetAppPath(szSysFile);
	strcat(szSysFile, "WinDDK.sys");

	// 安装并启动驱动
	DriveControl.Install(szSysFile, szSvcLnkName, szSvcLnkName);
	DriveControl.Start();

	// 打开驱动的符号链接
	DriveControl.Open("\\\\.\\WinDDK");

	// 应用层数据结构体数据
	BOOL bRet = FALSE;
	BufferPointer pInput = { 0 };
	PPROCESS_INFO pProcessInfo = NULL;

	// 分配堆空间
	pInput.BufferPtr = (PVOID)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(PROCESS_INFO) * 1000);
	pInput.nSize = sizeof(PROCESS_INFO) * 1000;

	ULONG nRet = 0;

	if (pInput.BufferPtr)
	{
		bRet = DriveControl.IoControl(IOCTL_IO_R3StructAll, &pInput, sizeof(BufferPointer), &nRet, sizeof(ULONG), 0);
	}

	std::cout << "[LyShark.com] 返回结构体数量: " << nRet << std::endl;

	if (bRet && nRet > 0)
	{
		pProcessInfo = (PPROCESS_INFO)pInput.BufferPtr;
		std::vector<PROCESS_INFO> vectorProcess;

		for (ULONG i = 0; i < nRet; i++)
		{
			vectorProcess.push_back(pProcessInfo[i]);
		}

		// 释放空间
		bRet = HeapFree(GetProcessHeap(), 0, pInput.BufferPtr);
		std::cout << "释放状态: " << bRet << std::endl;

		// 输出容器内的进程ID列表
		for (int x = 0; x < nRet; x++)
		{
			std::cout << "PID: " << vectorProcess[x].PID << " PPID: " << vectorProcess[x].PPID << std::endl;
		}
	}

	// 关闭符号链接句柄
	CloseHandle(DriveControl.m_hDriver);

	// 停止并卸载驱动
	DriveControl.Stop();
	DriveControl.Remove();

	system("pause");
	return 0;
}

手动编译这两个程序,将驱动签名后以管理员身份运行lyshark.exe客户端,此时屏幕中即可看到滚动输出效果,如此一来就实现了循环传递参数的目的。

与驱动开发:通过应用堆实现多次通信相似的内容:

驱动开发:通过应用堆实现多次通信

在前面的文章`《驱动开发:运用MDL映射实现多次通信》`LyShark教大家使用`MDL`的方式灵活的实现了内核态多次输出结构体的效果,但是此种方法并不推荐大家使用原因很简单首先内核空间比较宝贵,其次内核里面不能分配太大且每次传出的结构体最大不能超过`1024`个,而最终这些内存由于无法得到更好的释放从而导致坏堆的产生,这样的程序显然是无法在生产环境中使用的,如下`LyShark`将教大家通过在应

驱动开发:通过MDL映射实现多次通信

在前几篇文章中`LyShark`通过多种方式实现了驱动程序与应用层之间的通信,这其中就包括了通过运用`SystemBuf`缓冲区通信,运用`ReadFile`读写通信,运用`PIPE`管道通信,以及运用`ASYNC`反向通信,这些通信方式在应对`一收一发`模式的时候效率极高,但往往我们需要实现一次性吐出多种数据,例如ARK工具中当我们枚举内核模块时,往往应用层例程中可以返回几条甚至是几十条结果,如

驱动开发:基于事件同步的反向通信

在之前的文章中`LyShark`一直都在教大家如何让驱动程序与应用层进行`正向通信`,而在某些时候我们不仅仅只需要正向通信,也需要反向通信,例如杀毒软件如果驱动程序拦截到恶意操作则必须将这个请求动态的转发到应用层以此来通知用户,而这种通信方式的实现有多种,通常可以使用创建Socket套接字的方式实现,亦或者使用本章所介绍的通过`事件同步`的方法实现反向通信。

驱动开发:内核RIP劫持实现DLL注入

本章将探索内核级DLL模块注入实现原理,DLL模块注入在应用层中通常会使用`CreateRemoteThread`直接开启远程线程执行即可,驱动级别的注入有多种实现原理,而其中最简单的一种实现方式则是通过劫持EIP的方式实现,其实现原理可总结为,挂起目标进程,停止目标进程EIP的变换,在目标进程开启空间,并把相关的指令机器码和数据拷贝到里面去,然后直接修改目标进程EIP使其强行跳转到我们拷贝进去的

驱动开发:摘除InlineHook内核钩子

在笔者上一篇文章`《驱动开发:内核层InlineHook挂钩函数》`中介绍了通过替换`函数`头部代码的方式实现`Hook`挂钩,对于ARK工具来说实现扫描与摘除`InlineHook`钩子也是最基本的功能,此类功能的实现一般可在应用层进行,而驱动层只需要保留一个`读写字节`的函数即可,将复杂的流程放在应用层实现是一个非常明智的选择,与`《驱动开发:内核实现进程反汇编》`中所使用的读写驱动基本一致,

驱动开发:内核LoadLibrary实现DLL注入

远程线程注入是最常用的一种注入技术,在应用层注入是通过`CreateRemoteThread`这个函数实现的,通过该函数通过创建线程并调用 `LoadLibrary` 动态载入指定的DLL来实现注入,而在内核层同样存在一个类似的内核函数`RtlCreateUserThread`,但需要注意的是此函数未被公开,`RtlCreateUserThread`其实是对`NtCreateThreadEx`的包

驱动开发:应用DeviceIoContro模板精讲

在笔者上一篇文章`《驱动开发:应用DeviceIoContro开发模板》`简单为大家介绍了如何使用`DeviceIoContro`模板快速创建一个驱动开发通信案例,但是该案例过于简单也无法独立加载运行,本章将继续延申这个知识点,通过封装一套标准通用模板来实现驱动通信中的常用传递方式,这其中包括了如何传递字符串,传递整数,传递数组,传递结构体等方法。可以说如果你能掌握本章模板精讲的内容基本上市面上的

驱动开发:取进程模块的函数地址

在笔者上一篇文章`《驱动开发:内核取应用层模块基地址》`中简单为大家介绍了如何通过遍历`PLIST_ENTRY32`链表的方式获取到`32位`应用程序中特定模块的基地址,由于是入门系列所以并没有封装实现太过于通用的获取函数,本章将继续延申这个话题,并依次实现通用版`GetUserModuleBaseAddress()`取远程进程中指定模块的基址和`GetModuleExportAddress()`

驱动开发:内核ShellCode线程注入

还记得`《驱动开发:内核LoadLibrary实现DLL注入》`中所使用的注入技术吗,我们通过`RtlCreateUserThread`函数调用实现了注入DLL到应用层并执行,本章将继续探索一个简单的问题,如何注入`ShellCode`代码实现反弹Shell,这里需要注意一般情况下`RtlCreateUserThread`需要传入两个最重要的参数,一个是`StartAddress`开始执行的内存块

驱动开发:内核实现进程汇编与反汇编

在笔者上一篇文章`《驱动开发:内核MDL读写进程内存》`简单介绍了如何通过MDL映射的方式实现进程读写操作,本章将通过如上案例实现远程进程反汇编功能,此类功能也是ARK工具中最常见的功能之一,通常此类功能的实现分为两部分,内核部分只负责读写字节集,应用层部分则配合反汇编引擎对字节集进行解码,此处我们将运用`capstone`引擎实现这个功能。