驱动开发:内核读写内存多级偏移

驱动,开发,内核,读写,内存,多级,偏移 · 浏览次数 : 325

小编点评

#include #include #include // 普通Ke内存读取NTSTATUS KeReadProcessMemory PEPROCESS Process; PVOID SourceAddress; PVOID TargetAddress; SIZE_T Size; // 驱动卸载例程VOID UnDriver(PDRIVER_OBJECT driver) void UnDriver(PDRIVER_OBJECT driver) { // 驱动入口地址NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath) DbgPrint("Hello LyShark"); // 获取驱动对象地址 PVOID pDriver = driver; // 获取源地址 SourceAddress = pDriver->SourceAddress; // 获取目标地址 TargetAddress = pDriver->TargetAddress; // 获取目标地址偏移 DWORD offsets = pDriver->Offsets; // 打印偏移地址 DbgPrint("PID: %d 基址: %p 偏移长度: %d ", pDriver->PID, SourceAddress, offsets); // 打印1级偏移地址 DbgPrint("[+] 1级偏移: %x ", offsets + 1); // 打印2级偏移地址 DbgPrint("[+] 2级偏移: %x ", offsets + 2); // 打印3级偏移地址 DbgPrint("[+] 3级偏移: %x ", offsets + 3); // 打印4级偏移地址 DbgPrint("[+] 4级偏移: %x ", offsets + 4); // 检查内存中计算出的偏移地址 DbgPrint("[CheckMemory] 计算偏移地址: %x ", offsets); // 解释内存读取 // DWORD64 offsets = WIN10_ReadDeviationMemory(PID, PBase, Offset, Size); // DbgPrint("PID: %d 基址: %p 偏移长度: %d ", PID, PBase, Size); // DbgPrint("[+] 1级偏移: %x ", Offset + 1); // DbgPrint("[+] 2级偏移: %x ", Offset + 2); // DbgPrint("[+] 3级偏移: %x ", Offset + 3); // DbgPrint("[+] 4级偏移: %x ", Offset + 4); }

正文

让我们继续在《内核读写内存浮点数》的基础之上做一个简单的延申,如何实现多级偏移读写,其实很简单,读写函数无需改变,只是在读写之前提前做好计算工作,以此来得到一个内存偏移值,并通过调用内存写入原函数实现写出数据的目的。

以读取偏移内存为例,如下代码同样来源于本人的LyMemory读写驱动项目,其中核心函数为WIN10_ReadDeviationIntMemory()该函数的主要作用是通过用户传入的基地址与偏移值,动态计算出当前的动态地址。

函数首先将基地址指向要读取的变量,并将其转换为LPCVOID类型的指针。然后将指向变量值的缓冲区转换为LPVOID类型的指针。接下来,函数使用PsLookupProcessByProcessId函数查找目标进程并返回其PEPROCESS结构体。随后,函数从偏移地址数组的最后一个元素开始迭代,每次循环都从目标进程中读取4字节整数型数据,并将其存储在Value变量中。然后,函数将基地址指向Value和偏移地址的和,以便在下一次循环中读取更深层次的变量。最后,函数将基地址指向最终变量的地址,读取变量的值,并返回。

如下案例所示,用户传入进程基址以及offset偏移值时,只需要动态计算出该偏移地址,并与基址相加即可得到动态地址。

#include <ntifs.h>
#include <ntintsafe.h>
#include <windef.h>

// 普通Ke内存读取
NTSTATUS KeReadProcessMemory(PEPROCESS Process, PVOID SourceAddress, PVOID TargetAddress, SIZE_T Size)
{
	PEPROCESS SourceProcess = Process;
	PEPROCESS TargetProcess = PsGetCurrentProcess();
	SIZE_T Result;
	if (NT_SUCCESS(MmCopyVirtualMemory(SourceProcess, SourceAddress, TargetProcess, TargetAddress, Size, KernelMode, &Result)))
		return STATUS_SUCCESS;
	else
		return STATUS_ACCESS_DENIED;
}

// 读取整数内存多级偏移
/*
  Pid: 目标进程的进程ID。
  Base: 变量的基地址。
  offset: 相对基地址的多级偏移地址,用于定位变量。
  len: 偏移地址的数量。
*/
INT64 WIN10_ReadDeviationIntMemory(HANDLE Pid, LONG Base, DWORD offset[32], DWORD len)
{
	INT64 Value = 0;
	LPCVOID pbase = (LPCVOID)Base;
	LPVOID rbuffer = (LPVOID)&Value;

	PEPROCESS Process;
	PsLookupProcessByProcessId((HANDLE)Pid, &Process);

	for (int x = len - 1; x >= 0; x--)
	{
		__try
		{
			KeReadProcessMemory(Process, pbase, rbuffer, 4);
			pbase = (LPCVOID)(Value + offset[x]);
		}
		__except (EXCEPTION_EXECUTE_HANDLER)
		{
			return 0;
		}
	}

	__try
	{
		DbgPrint("读取基址:%x \n", pbase);
		KeReadProcessMemory(Process, pbase, rbuffer, 4);
	}
	__except (EXCEPTION_EXECUTE_HANDLER)
	{
		return 0;
	}

	return Value;
}

// 驱动卸载例程
VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint("Uninstall Driver \n");
}

// 驱动入口地址
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("Hello LyShark \n");

	DWORD PID = 4884;
	LONG PBase = 0x6566e0;
	LONG Size = 4;
	DWORD Offset[32] = { 0 };

	Offset[0] = 0x18;
	Offset[1] = 0x0;
	Offset[2] = 0x14;
	Offset[3] = 0x0c;

	// 读取内存数据
	INT64 read = WIN10_ReadDeviationIntMemory(PID, PBase, Offset, Size);

	DbgPrint("PID: %d 基址: %p 偏移长度: %d \n", PID, PBase, Size);
	DbgPrint("[+] 1级偏移: %x \n", Offset[0]);
	DbgPrint("[+] 2级偏移: %x \n", Offset[1]);
	DbgPrint("[+] 3级偏移: %x \n", Offset[2]);
	DbgPrint("[+] 4级偏移: %x \n", Offset[3]);

	DbgPrint("[ReadMemory] 读取偏移数据: %d \n", read);

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

编译并运行如上这段代码,则可获取到PID=4884PBase的动态地址中的数据,如下图所示;

至于如何将数据写出四级偏移的基址上面,则只需要取出pbase里面的基址,并通过原函数WIN10_WriteProcessMemory直接写出数据即可,此出的原函数在《内核MDL读写进程内存》中已经做了详细介绍,实现写出代码如下所示;

#include <ntifs.h>
#include <ntintsafe.h>
#include <windef.h>

// 普通Ke内存读取
NTSTATUS KeReadProcessMemory(PEPROCESS Process, PVOID SourceAddress, PVOID TargetAddress, SIZE_T Size)
{
	PEPROCESS SourceProcess = Process;
	PEPROCESS TargetProcess = PsGetCurrentProcess();
	SIZE_T Result;
	if (NT_SUCCESS(MmCopyVirtualMemory(SourceProcess, SourceAddress, TargetProcess, TargetAddress, Size, KernelMode, &Result)))
		return STATUS_SUCCESS;
	else
		return STATUS_ACCESS_DENIED;
}

// Win10 内存写入函数
BOOLEAN WIN10_WriteProcessMemory(HANDLE Pid, PVOID Address, SIZE_T BYTE_size, PVOID VirtualAddress)
{
	PVOID buff1;
	VOID *buff2;
	int MemoryNumerical = 0;
	KAPC_STATE KAPC = { 0 };

	PEPROCESS Process;
	PsLookupProcessByProcessId((HANDLE)Pid, &Process);

	__try
	{
		//分配内存
		buff1 = ExAllocatePoolWithTag((POOL_TYPE)0, BYTE_size, 1997);
		buff2 = buff1;
		*(int*)buff1 = 1;
		if (MmIsAddressValid((PVOID)VirtualAddress))
		{
			// 复制内存
			memcpy(buff2, VirtualAddress, BYTE_size);
		}
		else
		{
			return FALSE;
		}

		// 附加到要读写的进程
		KeStackAttachProcess((PRKPROCESS)Process, &KAPC);
		if (MmIsAddressValid((PVOID)Address))
		{
			// 判断地址是否可写
			ProbeForWrite(Address, BYTE_size, 1);
			// 复制内存
			memcpy(Address, buff2, BYTE_size);
		}
		else
		{
			return FALSE;
		}
		// 剥离附加的进程
		KeUnstackDetachProcess(&KAPC);
		ExFreePoolWithTag(buff2, 1997);
	}
	__except (EXCEPTION_EXECUTE_HANDLER)
	{
		return FALSE;
	}
	return FALSE;
}

// 写入整数内存多级偏移
INT64 WIN10_WriteDeviationIntMemory(HANDLE Pid, LONG Base, DWORD offset[32], DWORD len, INT64 SetValue)
{
	INT64 Value = 0;
	LPCVOID pbase = (LPCVOID)Base;
	LPVOID rbuffer = (LPVOID)&Value;

	PEPROCESS Process;
	PsLookupProcessByProcessId((HANDLE)Pid, &Process);

	for (int x = len - 1; x >= 0; x--)
	{
		__try
		{
			KeReadProcessMemory(Process, pbase, rbuffer, 4);
			pbase = (LPCVOID)(Value + offset[x]);
		}
		__except (EXCEPTION_EXECUTE_HANDLER)
		{
			return 0;
		}
	}

	__try
	{
		KeReadProcessMemory(Process, pbase, rbuffer, 4);
	}
	__except (EXCEPTION_EXECUTE_HANDLER)
	{
		return 0;
	}

	// 使用原函数写入
	BOOLEAN ref = WIN10_WriteProcessMemory(Pid, (void *)pbase, 4, &SetValue);
	if (ref == TRUE)
	{
		DbgPrint("[内核写成功] # 写入地址: %x \n", pbase);
		return 1;
	}
	return 0;
}

// 驱动卸载例程
VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint("Uninstall Driver \n");
}

// 驱动入口地址
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("Hello LyShark \n");

	DWORD PID = 4884;
	LONG PBase = 0x6566e0;
	LONG Size = 4;
	INT64 SetValue = 100;

	DWORD Offset[32] = { 0 };

	Offset[0] = 0x18;
	Offset[1] = 0x0;
	Offset[2] = 0x14;
	Offset[3] = 0x0c;

	// 写出内存数据
	INT64 write = WIN10_WriteDeviationIntMemory(PID, PBase, Offset, Size, SetValue);

	DbgPrint("PID: %d 基址: %p 偏移长度: %d \n", PID, PBase, Size);
	DbgPrint("[+] 1级偏移: %x \n", Offset[0]);
	DbgPrint("[+] 2级偏移: %x \n", Offset[1]);
	DbgPrint("[+] 3级偏移: %x \n", Offset[2]);
	DbgPrint("[+] 4级偏移: %x \n", Offset[3]);

	DbgPrint("[WriteMemory] 写出偏移数据: %d \n", SetValue);

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

运行如上代码将在0x6566e0所在的基址上,将数据替换为100,实现效果图如下所示;

那么如何实现读写内存浮点数,字节集等多级偏移呢?

其实我们可以封装一个WIN10_ReadDeviationMemory函数,让其只计算得出偏移地址,而所需要写出的类型则根据自己的实际需求配合不同的写入函数完成,也就是将两者分离开,如下则是一段实现计算偏移的代码片段,该代码同样来自于本人的LyMemory驱动读写项目;

#include <ntifs.h>
#include <ntintsafe.h>
#include <windef.h>

// 普通Ke内存读取
NTSTATUS KeReadProcessMemory(PEPROCESS Process, PVOID SourceAddress, PVOID TargetAddress, SIZE_T Size)
{
	PEPROCESS SourceProcess = Process;
	PEPROCESS TargetProcess = PsGetCurrentProcess();
	SIZE_T Result;
	if (NT_SUCCESS(MmCopyVirtualMemory(SourceProcess, SourceAddress, TargetProcess, TargetAddress, Size, KernelMode, &Result)))
		return STATUS_SUCCESS;
	else
		return STATUS_ACCESS_DENIED;
}

// 读取多级偏移内存动态地址
DWORD64 WIN10_ReadDeviationMemory(HANDLE Pid, LONG Base, DWORD offset[32], DWORD len)
{
	INT64 Value = 0;
	LPCVOID pbase = (LPCVOID)Base;
	LPVOID rbuffer = (LPVOID)&Value;

	PEPROCESS Process;
	PsLookupProcessByProcessId((HANDLE)Pid, &Process);

	for (int x = len - 1; x >= 0; x--)
	{
		__try
		{
			KeReadProcessMemory(Process, pbase, rbuffer, 4);
			pbase = (LPCVOID)(Value + offset[x]);
		}
		__except (EXCEPTION_EXECUTE_HANDLER)
		{
			return 0;
		}
	}

	return pbase;
}

// 驱动卸载例程
VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint("Uninstall Driver \n");
}

// 驱动入口地址
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("Hello LyShark \n");

	DWORD PID = 4884;
	LONG PBase = 0x6566e0;
	LONG Size = 4;

	DWORD Offset[32] = { 0 };

	Offset[0] = 0x18;
	Offset[1] = 0x0;
	Offset[2] = 0x14;
	Offset[3] = 0x0c;

	// 写出内存数据
	DWORD64 offsets = WIN10_ReadDeviationMemory(PID, PBase, Offset, Size);

	DbgPrint("PID: %d 基址: %p 偏移长度: %d \n", PID, PBase, Size);
	DbgPrint("[+] 1级偏移: %x \n", Offset[0]);
	DbgPrint("[+] 2级偏移: %x \n", Offset[1]);
	DbgPrint("[+] 3级偏移: %x \n", Offset[2]);
	DbgPrint("[+] 4级偏移: %x \n", Offset[3]);

	DbgPrint("[CheckMemory] 计算偏移地址: %x \n", offsets);

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

运行如上代码将动态计算出目前偏移地址的pbase实际地址,实现效果图如下所示;

与驱动开发:内核读写内存多级偏移相似的内容:

驱动开发:内核读写内存多级偏移

让我们继续在`《内核读写内存浮点数》`的基础之上做一个简单的延申,如何实现多级偏移读写,其实很简单,读写函数无需改变,只是在读写之前提前做好计算工作,以此来得到一个内存偏移值,并通过调用内存写入原函数实现写出数据的目的。以读取偏移内存为例,如下代码同样来源于本人的`LyMemory`读写驱动项目,其中核心函数为`WIN10_ReadDeviationIntMemory()`该函数的主要作用是通过用

驱动开发:内核文件读写系列函数

在应用层下的文件操作只需要调用微软应用层下的`API`函数及`C库`标准函数即可,而如果在内核中读写文件则应用层的API显然是无法被使用的,内核层需要使用内核专有API,某些应用层下的API只需要增加Zw开头即可在内核中使用,例如本章要讲解的文件与目录操作相关函数,多数ARK反内核工具都具有对文件的管理功能,实现对文件或目录的基本操作功能也是非常有必要的。

驱动开发:内核解析PE结构节表

在笔者上一篇文章`《驱动开发:内核解析PE结构导出表》`介绍了如何解析内存导出表结构,本章将继续延申实现解析PE结构的PE头,PE节表等数据,总体而言内核中解析PE结构与应用层没什么不同,在上一篇文章中`LyShark`封装实现了`KernelMapFile()`内存映射函数,在之后的章节中这个函数会被多次用到,为了减少代码冗余,后期文章只列出重要部分,读者可以自行去前面的文章中寻找特定的片段。

驱动开发:内核读写内存浮点数

如前所述,在前几章内容中笔者简单介绍了`内存读写`的基本实现方式,这其中包括了`CR3切换`读写,`MDL映射`读写,`内存拷贝`读写,本章将在如前所述的读写函数进一步封装,并以此来实现驱动读写内存浮点数的目的。内存`浮点数`的读写依赖于`读写内存字节`的实现,因为浮点数本质上也可以看作是一个字节集,对于`单精度浮点数`来说这个字节集列表是4字节,而对于`双精度浮点数`,此列表长度则为8字节。

驱动开发:内核远程堆分配与销毁

在开始学习内核内存读写篇之前,我们先来实现一个简单的内存分配销毁堆的功能,在内核空间内用户依然可以动态的申请与销毁一段可控的堆空间,一般而言内核中提供了`ZwAllocateVirtualMemory`这个函数用于专门分配虚拟空间,而与之相对应的则是`ZwFreeVirtualMemory`此函数则用于销毁堆内存,当我们需要分配内核空间时往往需要切换到对端进程栈上再进行操作,接下来`LyShark

驱动开发:内核实现进程汇编与反汇编

在笔者上一篇文章`《驱动开发:内核MDL读写进程内存》`简单介绍了如何通过MDL映射的方式实现进程读写操作,本章将通过如上案例实现远程进程反汇编功能,此类功能也是ARK工具中最常见的功能之一,通常此类功能的实现分为两部分,内核部分只负责读写字节集,应用层部分则配合反汇编引擎对字节集进行解码,此处我们将运用`capstone`引擎实现这个功能。

驱动开发:内核物理内存寻址读写

在某些时候我们需要读写的进程可能存在虚拟内存保护机制,在该机制下用户的`CR3`以及`MDL`读写将直接失效,从而导致无法读取到正确的数据,本章我们将继续研究如何实现物理级别的寻址读写。首先,驱动中的物理页读写是指在驱动中直接读写物理内存页(而不是虚拟内存页)。这种方式的优点是它能够更快地访问内存,因为它避免了虚拟内存管理的开销,通过直接读写物理内存,驱动程序可以绕过虚拟内存的保护机制,获得对系统

驱动开发:内核遍历文件或目录

在笔者前一篇文章`《驱动开发:内核文件读写系列函数》`简单的介绍了内核中如何对文件进行基本的读写操作,本章我们将实现内核下遍历文件或目录这一功能,该功能的实现需要依赖于`ZwQueryDirectoryFile`这个内核API函数来实现,该函数可返回给定文件句柄指定的目录中文件的各种信息,此类信息会保存在`PFILE_BOTH_DIR_INFORMATION`结构下,通过遍历该目录即可获取到文件的

驱动开发:内核注册表增删改查

注册表是Windows中的一个重要的数据库,用于存储系统和应用程序的设置信息,注册表是一个巨大的树形结构,无论在应用层还是内核层操作注册表都有独立的API函数可以使用,而在内核中读写注册表则需要使用内核装用API函数,如下将依次介绍并封装一些案例,实现对注册表的创建,删除,更新,查询等操作。

驱动开发:内核解析PE结构导出表

在笔者的上一篇文章`《驱动开发:内核特征码扫描PE代码段》`中`LyShark`带大家通过封装好的`LySharkToolsUtilKernelBase`函数实现了动态获取内核模块基址,并通过`ntimage.h`头文件中提供的系列函数解析了指定内核模块的`PE节表`参数,本章将继续延申这个话题,实现对PE文件导出表的解析任务,导出表无法动态获取,解析导出表则必须读入内核模块到内存才可继续解析,所