复杂度分析:如何分析、统计算法的执行效率和资源消耗

复杂度,分析,如何,统计算法,执行,效率,资源,消耗 · 浏览次数 : 245

小编点评

**内容简介** *渐进时间复杂度,简称简称时间复杂度,是一种表示算法执行效率与数据规模之间的增长关系的指标。 *类比分析,空间复杂度分析都属于渐进时间复杂度。 *时间复杂度分析和空间复杂度分析都是用来分析算法执行效率与数据规模之间的增长关系的指标。 **主要内容** *时间复杂度分析: *时间复杂度全称是渐进时间复杂度,表示算法执行效率与数据规模之间的增长关系。 *类比分析,空间复杂度分析都是属于渐进时间复杂度。 *时间复杂度分析常用的指标包括时间复杂度和空间复杂度。 *空间复杂度分析: *空间复杂度全称是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。 *类比分析,空间复杂度分析都是属于渐进空间复杂度。 *空间复杂度分析常用的指标包括空间复杂度和数据规模。 **内容结论** *渐进时间复杂度和空间复杂度是用来分析算法执行效率与数据规模之间的增长关系的指标。 *常用的时间复杂度分析指标包括时间复杂度和空间复杂度。 *常用的空间复杂度分析指标包括空间复杂度和数据规模。

正文

作者:京东物流 崔旭

我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间、空间复杂度分析。

1 为什么需要复杂度分析?

你可能会有些疑惑,我把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比实实在在跑一遍得到的数据更准确吗?

首先可以肯定地说,这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还给这种方法起了一个名字,叫事后统计法。但是,这种统计方法有非常大的局限性。

1.1 测试结果非常依赖测试环境

测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用 Intel Core i9 处理器和 Intel Core i3 处理器来运行,i9 处理器要比 i3 处理器执行的速度快很多。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等我们换到另一台机器上时,可能会有截然相反的结果。

1.2 测试结果受数据规模的影响很大

对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!

所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法,这就是我们接下来要说的大O复杂度表示法。

2 大O复杂度表示法

算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?

这里有段非常简单的代码,求 1,2,3…n 的累加和。现在,一块来估算一下这段代码的执行时间吧。

从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?

第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n_unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)_unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。

按照这个分析思路,我们再来看这段代码。

我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?

第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n_unit_time 的执行时间,第 7、8 行代码循环执行了 n²遍,所以需要 2n²_unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n²+2n+3)*unit_time。

尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!

我来具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = (2n²+2n+3)。这就是大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度,简称时间复杂度。

当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n²)。

3 时间复杂度分析

前面介绍了大 O 时间复杂度的由来和表示方法。现在我们来看下,如何分析一段代码的时间复杂度?

3.1 只关注循环执行次数最多的一段代码

大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。

为了便于你理解,我还拿前面的例子来说明。

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

3.2 加法法则:总复杂度等于量级最大的那段代码的复杂度

这里还有一段代码。

这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。

第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。

即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n²)。
综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为 O(n²)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:

如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

3.3 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

刚讲了一个复杂度分析中的加法法则,这儿还有一个乘法法则。类比一下,你应该能“猜到”公式是什么样子的吧?

如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)_T2(n)=O(f(n))_O(g(n))=O(f(n)*g(n)).

也就是说,假设 T1(n) = O(n),T2(n) = O(n²),则 T1(n) * T2(n) = O(n³)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环,我举个例子给你解释一下。

我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n)_T2(n) = O(n_n) = O(n²)。

3.4 几种常见时间复杂度实例分析

虽然代码千差万别,但是常见的复杂度量级并不多。稍微总结了一下,这些复杂度量级几乎涵盖了大部分的场景。

  • 常量阶 O(1)
  • 对数阶 O(logn)
  • 线性阶 O(n)
  • 线性对数阶 O(nlogn)
  • 平方阶 O(n²)
  • 立方阶 O(n³) …
  • 指数阶 O(2ⁿ)
  • 阶乘阶 O(n!)

对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2ⁿ) 和 O(n!)。

当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。我们主要来看几种常见的多项式时间复杂度。

1.O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

2.O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。

实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2ˣ=n 求解 x ,x=log₂n,所以,这段代码的时间复杂度就是 O(log₂n)。

现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为 O(log₃n)。

实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?

我们知道,对数之间是可以互相转换的,log₃n 就等于 log₃2_log₂n,所以 O(log₃n) = O(C_log₂n),其中 C=log₃2 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log₂n) 就等于 O(log₃n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

如果你理解了O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

3.O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)_T2(n) = O(f(m)_f(n))。

4 空间复杂度分析

前面,咱们花了很长时间讲大 O 表示法和时间复杂度分析,理解了前面讲的内容,空间复杂度分析方法学起来就非常简单了。

时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。

还是拿具体的例子来说明。

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是 O(1)、O(n)、O(n²),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。

5 内容小结

复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n²)。

与复杂度分析:如何分析、统计算法的执行效率和资源消耗相似的内容:

复杂度分析:如何分析、统计算法的执行效率和资源消耗

我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间、空间复杂度分析。

Elasticsearch如何聚合查询多个统计值,如何嵌套聚合?并相互引用,统计索引中某一个字段的空值率?语法是怎么样的?

Elasticsearch聚合查询是一种强大的工具,允许我们对索引中的数据进行复杂的统计分析和计算。本文将详细解释一个聚合查询示例,该查询用于统计满足特定条件的文档数量,并计算其占总文档数量的百分比。这里回会分享如何统计某个字段的空值率,然后扩展介绍ES的一些基础知识。

K8S POD控制器:从基础到高级实战技巧

本文深入探讨了Kubernetes POD控制器的基础知识、配置示例、最佳实践,并通过一个电子商务公司的案例分析,展示了如何在复杂的生产环境中应用POD控制器,以优化云服务架构。 关注【TechLeadCloud】,分享互联网架构、云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发

[转帖]全栈监控:如何设计全栈监控策略?

https://zhuanlan.zhihu.com/p/597779642 你好,我是高楼。这一篇,我们来看看怎样设计全链路压测的全局监控。 对于全链路压测来说,因为涉及到的服务比较多,所以分析逻辑难度加大,对监控的要求当然也更加复杂。 如果我们总是在性能瓶颈出现之后再去做分析,很可能会发现缺少各

4.10 x64dbg 反汇编功能的封装

LyScript 插件提供的反汇编系列函数虽然能够实现基本的反汇编功能,但在实际使用中,可能会遇到一些更为复杂的需求,此时就需要根据自身需要进行二次开发,以实现更加高级的功能。本章将继续深入探索反汇编功能,并将介绍如何实现反汇编代码的检索、获取上下一条代码等功能。这些功能对于分析和调试代码都非常有用,因此是书中重要的内容之一。在本章的学习过程中,读者不仅可以掌握反汇编的基础知识和技巧,还能够了解如

[转帖]java获取到heapdump文件后,如何快速分析?

https://www.jianshu.com/p/aaf56385766d 简介 在之前的OOM问题复盘之后,本周,又一Java服务出现了内存问题,这次问题不严重,只会触发堆内存占用高报警,没有触发OOM,但好在之前的复盘中总结了dump脚本,会在堆占用高时自动执行jstack与jmap,使得我们

MongoDB 中的索引分析

MongoDB 的索引 前言 MongoDB 使用 B 树还是 B+ 树索引 单键索引 创建单键索引 使用 expireAfterSeconds 创建 TTL 索引 复合索引 最左匹配原则 ESR 规则 如何使用排序条件 多键索引 创建多键索引 局限性 哈希索引 注意事项 创建索引 总结 参考 Mo

[转帖]炸了~Redis bigkey导致生产事故-bigkey问题全面分析

文章首发于公众号:BiggerBoy 原文链接 一个Redis生产事故的复盘,整理这篇文章分享给大家。本期文章分析Redis中的bigkey相关问题,主要从以下几个点入手: 文章目录 什么是bigkey?bigkey的危害bigkey的产生如何发现bigkey实际生产的操作方式 如何优化bigkey

漫谈前端自动化测试演进之路及测试工具分析

随着前端技术的不断发展和应用程序的日益复杂,前端自动化测试也在不断演进。随着 Web 应用程序变得越来越复杂,自动化测试的需求也越来越高。如今,自动化测试已经成为 Web 应用程序开发过程中不可或缺的一部分,它们可以帮助开发人员更快地发现和修复错误,提高应用程序的性能和可靠性。

从源码角度剖析 golang 如何fork一个进程

# 从源码角度剖析 golang 如何fork一个进程 创建一个新进程分为两个步骤,一个是fork系统调用,一个是execve 系统调用,fork调用会复用父进程的堆栈,而execve直接覆盖当前进程的堆栈,并且将下一条执行指令指向新的可执行文件。 在分析源码之前,我们先来看看golang fork