基于ModelArts进行流感患者密接排查

基于,modelarts,进行,流感,患者,密接,排查 · 浏览次数 : 43

小编点评

```python # Display the analysis result using IPython display HTMLoutpath = "DeepSOCIAL DTC.mp4" mp4 = open(outpath, 'rb').read() data_url = "data:video/mp4;base64,\" + b64encode(mp4).decode() HTML(\"\"\"<video width=400 controls> <source src=\"%s\" type=\"video/mp4\"></video>\"\"\"" % data_url)<iframe src="https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/DeepSocial/DeepSOCIAL%20DTC.mp4" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" height=450 width=800> </iframe> <iframe src="https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/DeepSocial/DeepSOCIAL%20Social%20Distancing.mp4" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" height=450 width=800> </iframe> # Print the analysis result using IPython display print("Analysis Completed") # Release the IPython display and close the file cap.release() if DTC: DTCVid.release() if SocialDistance: SDimageVid.release() if CrowdMap: crowdVid.release() ```

正文

摘要:针对疫情期间存在的排查实时性差、排查效率低、无法追踪密接者等问题,可以使用基于YOLOv4的行人检测、行人距离估计、多目标跟踪的方案进行解决。

本文分享自华为云社区《基于ModelArts进行流感患者密接排查》,作者:HWCloudAI。

目前流感病毒患者密接难以排查,尤其是在人流量大的区域,进行排查需要消耗大量人力且需要等待。针对疫情期间存在的排查实时性差、排查效率低、无法追踪密接者等问题,可以使用基于YOLOv4的行人检测、行人距离估计、多目标跟踪的方案进行解决。

1)利用行人重识别技术实现流感病毒患者及密接者识别功能;

2)结合Stereo-vision以及YOLO算法实现患者的真实密切接触鉴别;

3)利用SORT多目标跟踪算法绘制出患者及密接者的行动轨迹;

该系统可以有效提高防疫效率,减轻经济与防疫压力,提高安全性。

今天将带大家了解 通过华为云ModelArts的 DeepSocial-COVID-19社会距离监测案例实现AI排查新冠密接。

👉 点击链接进入到AI Gallery的“DeepSocial-COVID-19社会距离监测”案例页面,点击Run in ModelArts,即可进入ModelArts Jupyter运行环境,此处需要选用GPU的规格。

注:以下步骤所涉及的代码都已经写好,直接点击代码前面的箭头,让其自动运行即可。

步骤一:从华为云对象存储服务(OBS)拷贝案例所需代码。

# 下载代码和数据
import moxing as mox
mox.file.copy_parallel('obs://obs-aigallery-zc/clf/code/DeepSocial','DeepSocial')
# 引入依赖
from IPython.display import display, Javascript, Image
from base64 import b64decode, b64encode
import os
import cv2
import numpy as np
import PIL
import io
import html
import time
import matplotlib.pyplot as plt
%matplotlib inline

步骤二:在本地编译YOLO。

需要根据运行环境修改Makefile 如是否有GPU等

如果编译报错:/bin/sh:nvcc not found

解决方式(参考):

1)查看nvcc可执行文件的路径

which nvcc

2)修改Makefile文件中的NVCC=nvcc,把nvcc替换为上面查询到的nvcc可执行文件的路径,如:/usr/local/cuda/bin/nvcc

NVCC=/usr/local/cuda/bin/nvcc

%cd DeepSocial
!make

步骤三:使用Darknet的python接口

# import darknet functions to perform object detections
from darknet2 import *
# load in our YOLOv4 architecture network
network, class_names, class_colors = load_network("cfg/yolov4.cfg", "cfg/coco.data", "DeepSocial.weights")
width = network_width(network)
height = network_height(network)
# darknet helper function to run detection on image
def darknet_helper(img, width, height):
 darknet_image = make_image(width, height, 3)
 img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 img_resized = cv2.resize(img_rgb, (width, height),
                              interpolation=cv2.INTER_LINEAR)
  # get image ratios to convert bounding boxes to proper size
 img_height, img_width, _ = img.shape
 width_ratio = img_width/width
 height_ratio = img_height/height
  # run model on darknet style image to get detections
 copy_image_from_bytes(darknet_image, img_resized.tobytes())
  detections = detect_image(network, class_names, darknet_image)
 free_image(darknet_image)
 return detections, width_ratio, height_ratio

步骤四:使用SORT来实时跟踪目标

!pip install filterpy
from sort import *
mot_tracker = Sort(max_age=25, min_hits=4, iou_threshold=0.3)

步骤五:输入设置

Input            = "OxfordTownCentreDataset.avi" # 需要检测的适配
ReductionFactor = 2   # 采样因子
calibration      = [[180,162],[618,0],[552,540],[682,464]] # 相机标定的参数

步骤六:DeepSocial参数设置和函数引入

from deepsocial import *
######################## Frame number
StartFrom = 0 
EndAt = 500                       #-1 for the end of the video
######################## (0:OFF/ 1:ON) Outputs
CouplesDetection = 1                # Enable Couple Detection 
DTC = 1                # Detection, Tracking and Couples 
SocialDistance = 1
CrowdMap = 1
# MoveMap = 0
# ViolationMap = 0 
# RiskMap = 0
######################## Units are Pixel
ViolationDistForIndivisuals = 28 
ViolationDistForCouples = 31
####
CircleradiusForIndivsual = 14
CircleradiusForCouples = 17
######################## 
MembershipDistForCouples = (16 , 10) # (Forward, Behind) per Pixel
MembershipTimeForCouples = 35        # Time for considering as a couple (per Frame)
######################## (0:OFF/ 1:ON)
CorrectionShift = 1                    # Ignore people in the margins of the video
HumanHeightLimit = 200                  # Ignore people with unusual heights
########################
Transparency        = 0.7
######################## Output Video's path
Path_For_DTC = os.getcwd() + "/DeepSOCIAL DTC.mp4"
Path_For_SocialDistance = os.getcwd() + "/DeepSOCIAL Social Distancing.mp4"
Path_For_CrowdMap = os.getcwd() + "/DeepSOCIAL Crowd Map.mp4"
def extract_humans(detections):
 detetcted = []
 if len(detections) > 0: # At least 1 detection in the image and check detection presence in a frame  
 idList = []
        id = 0
 for label, confidence, bbox in detections:
 if label == 'person': 
 xmin, ymin, xmax, ymax = bbox2points(bbox)
                id +=1
 if id not in idList: idList.append(id)
 detetcted.append([int(xmin), int(ymin), int(xmax), int(ymax), idList[-1]])
 return np.array(detetcted)
def centroid(detections, image, calibration, _centroid_dict, CorrectionShift, HumanHeightLimit):
    e = birds_eye(image.copy(), calibration)
 centroid_dict = dict()
 now_present = list()
 if len(detections) > 0: 
 for d in detections:
            p = int(d[4])
 now_present.append(p)
 xmin, ymin, xmax, ymax = d[0], d[1], d[2], d[3]
            w = xmax - xmin
            h = ymax - ymin
            x = xmin + w/2
            y = ymax - h/2
 if h < HumanHeightLimit:
 overley = e.image
 bird_x, bird_y = e.projection_on_bird((x, ymax))
 if CorrectionShift:
 if checkupArea(overley, 1, 0.25, (x, ymin)):
 continue
 e.setImage(overley)
 center_bird_x, center_bird_y = e.projection_on_bird((x, ymin))
 centroid_dict[p] = (
 int(bird_x), int(bird_y),
 int(x), int(ymax), 
 int(xmin), int(ymin), int(xmax), int(ymax),
 int(center_bird_x), int(center_bird_y))
                _centroid_dict[p] = centroid_dict[p]
 return _centroid_dict, centroid_dict, e.image
def ColorGenerator(seed=1, size=10):
 np.random.seed = seed
    color=dict()
 for i in range(size):
        h = int(np.random.uniform() *255)
        color[i]= h
 return color
def VisualiseResult(_Map, e):
    Map = np.uint8(_Map)
 histMap = e.convrt2Image(Map)
 visualBird = cv2.applyColorMap(np.uint8(_Map), cv2.COLORMAP_JET)
 visualMap = e.convrt2Image(visualBird)
 visualShow = cv2.addWeighted(e.original, 0.7, visualMap, 1 - 0.7, 0)
 return visualShow, visualBird, histMap

步骤七:推理过程

cap = cv2.VideoCapture(Input)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
height, width = frame_height // ReductionFactor, frame_width // ReductionFactor
print("Video Reolution: ",(width, height))
if DTC: DTCVid = cv2.VideoWriter(Path_For_DTC, cv2.VideoWriter_fourcc(*'X264'), 30.0, (width, height))
if SocialDistance: SDimageVid = cv2.VideoWriter(Path_For_SocialDistance, cv2.VideoWriter_fourcc(*'X264'), 30.0, (width, height))
if CrowdMap: CrowdVid = cv2.VideoWriter(Path_For_CrowdMap, cv2.VideoWriter_fourcc(*'X264'), 30.0, (width, height))
colorPool = ColorGenerator(size = 3000)
_centroid_dict = dict()
_numberOFpeople = list()
_greenZone = list()
_redZone = list()
_yellowZone = list()
_final_redZone = list()
_relation = dict()
_couples = dict()
_trackMap = np.zeros((height, width, 3), dtype=np.uint8)
_crowdMap = np.zeros((height, width), dtype=np.int) 
_allPeople = 0
_counter = 1
frame = 0
while True:
 print('-- Frame : {}'.format(frame))
 prev_time = time.time()
    ret, frame_read = cap.read()
 if not ret: break
    frame += 1
 if frame <= StartFrom: continue
 if frame != -1:
 if frame > EndAt: break
 frame_resized = cv2.resize(frame_read,(width, height), interpolation=cv2.INTER_LINEAR)
    image = frame_resized
    e = birds_eye(image, calibration)
    detections, width_ratio, height_ratio = darknet_helper(image, width, height)
    humans = extract_humans(detections)
 track_bbs_ids = mot_tracker.update(humans) if len(humans) != 0 else humans
    _centroid_dict, centroid_dict, partImage = centroid(track_bbs_ids, image, calibration, _centroid_dict, CorrectionShift, HumanHeightLimit)
 redZone, greenZone = find_zone(centroid_dict, _greenZone, _redZone, criteria=ViolationDistForIndivisuals)
 if CouplesDetection:
        _relation, relation = find_relation(e, centroid_dict, MembershipDistForCouples, redZone, _couples, _relation)
        _couples, couples, coupleZone = find_couples(image, _centroid_dict, relation, MembershipTimeForCouples, _couples)
 yellowZone, final_redZone, redGroups = find_redGroups(image, centroid_dict, calibration, ViolationDistForCouples, redZone, coupleZone, couples , _yellowZone, _final_redZone)
 else:
        couples = []
 coupleZone = []
 yellowZone = []
 redGroups = redZone
 final_redZone = redZone
 if DTC:
 DTC_image = image.copy()
        _trackMap = Apply_trackmap(centroid_dict, _trackMap, colorPool, 3)
 DTC_image = cv2.add(e.convrt2Image(_trackMap), image) 
 DTCShow = DTC_image
 for id, box in centroid_dict.items():
 center_bird = box[0], box[1]
 if not id in coupleZone:
                cv2.rectangle(DTCShow,(box[4], box[5]),(box[6], box[7]),(0,255,0),2)
                cv2.rectangle(DTCShow,(box[4], box[5]-13),(box[4]+len(str(id))*10, box[5]),(0,200,255),-1)
                cv2.putText(DTCShow,str(id),(box[4]+2, box[5]-2),cv2.FONT_HERSHEY_SIMPLEX,.4,(0,0,0),1,cv2.LINE_AA)
 for coupled in couples:
            p1 , p2 = coupled
 couplesID = couples[coupled]['id']
 couplesBox = couples[coupled]['box']
            cv2.rectangle(DTCShow, couplesBox[2:4], couplesBox[4:], (0,150,255), 4)
            loc = couplesBox[0] , couplesBox[3]
            offset = len(str(couplesID)*5)
 captionBox = (loc[0] - offset, loc[1]-13), (loc[0] + offset, loc[1])
            cv2.rectangle(DTCShow,captionBox[0],captionBox[1],(0,200,255),-1)
 wc = captionBox[1][0] - captionBox[0][0]
 hc = captionBox[1][1] - captionBox[0][1]
            cx = captionBox[0][0] + wc // 2
            cy = captionBox[0][1] + hc // 2
 textLoc = (cx - offset, cy + 4)
            cv2.putText(DTCShow, str(couplesID) ,(textLoc),cv2.FONT_HERSHEY_SIMPLEX,.4,(0,0,0),1,cv2.LINE_AA)
 DTCVid.write(DTCShow)
 if SocialDistance:
 SDimage, birdSDimage = Apply_ellipticBound(centroid_dict, image, calibration, redZone, greenZone, yellowZone, final_redZone, coupleZone, couples, CircleradiusForIndivsual, CircleradiusForCouples)
 SDimageVid.write(SDimage)
 if CrowdMap:
        _crowdMap, crowdMap = Apply_crowdMap(centroid_dict, image, _crowdMap)
        crowd = (crowdMap - crowdMap.min()) / (crowdMap.max() - crowdMap.min())*255
 crowd_visualShow, crowd_visualBird, crowd_histMap = VisualiseResult(crowd, e)
 CrowdVid.write(crowd_visualShow)
    cv2.waitKey(3)
print('::: Analysis Completed')
cap.release()
if DTC: DTCVid.release(); print("::: Video Write Completed : ", Path_For_DTC)
if SocialDistance: SDimageVid.release() ; print("::: Video Write Completed : ", Path_For_SocialDistance)
if CrowdMap: CrowdVid.release() ; print("::: Video Write Completed : ", Path_For_CrowdMap)

步骤八:展示结果

from IPython.display import HTML
outpath = "DeepSOCIAL DTC.mp4"
mp4 = open(outpath,'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
HTML("""
<video width=400 controls>
 <source src="%s" type="video/mp4">
</video>
""" % data_url)

<iframe src="https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/DeepSocial/DeepSOCIAL%20DTC.mp4" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" height=450 width=800> </iframe> <iframe src="https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/DeepSocial/DeepSOCIAL%20Social%20Distancing.mp4" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" height=450 width=800> </iframe>

如果想要更好的效果,如何进行优化呢?

1.使用精确度更高的检测算法YOLOv7,使用追踪效果更好的Deep SORT;
2.使用更多数据进行训练

本次介绍就到这里啦,大家快去Gallery实操一下吧!

 

点击关注,第一时间了解华为云新鲜技术~

与基于ModelArts进行流感患者密接排查相似的内容:

基于ModelArts进行流感患者密接排查

摘要:针对疫情期间存在的排查实时性差、排查效率低、无法追踪密接者等问题,可以使用基于YOLOv4的行人检测、行人距离估计、多目标跟踪的方案进行解决。 本文分享自华为云社区《基于ModelArts进行流感患者密接排查》,作者:HWCloudAI。 目前流感病毒患者密接难以排查,尤其是在人流量大的区域,

论文复现丨基于ModelArts进行图像风格化绘画

摘要:这个 notebook 基于论文「Stylized Neural Painting, arXiv:2011.08114.」提供了最基本的「图片生成绘画」变换的可复现例子。 本文分享自华为云社区《基于ModelArts进行图像风格化绘画》,作者: HWCloudAI 。 项目首页 | GitHu

使用Mask R-CNN模型实现人体关键节点标注

摘要:在本案例中,我们将展示如何对基础的Mask R-CNN进行扩展,完成人体关键节点标注的任务。 本文分享自华为云社区《使用Mask R-CNN模型实现人体关键节点标注》,作者: 运气男孩。 前言 ModelArts 是面向开发者的一站式 AI 开发平台,为机器学习与深度学习提供海量数据预处理及交

论文复现丨基于ModelArts实现Text2SQL

摘要:该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL。基于列的值提取分为值提取和值列匹配两个模块。 本文分享自华为云社区《基于ModelArts实现Text2SQL》,作者:HWCloudAI。 M-SQL: Multi-Task Representation Learni

一文教你基于LangChain和ChatGLM3搭建本地知识库问答

借助ModelArts提供的AI开发能力,实现基于LangChain+ChatGLM3的本地知识库问答,通过具体案例让开发者更加清晰的了解大模型AI应用开发过程。

云图说 | Workflow:流水线工具,助您高效完成AI开发

摘要:Workflow是将ML Ops(机器学习和DevOps的组合实践)应用于ModelArts平台,可以让您更高效的完成AI开发。 本文分享自华为云社区《云图说 | 第263期 Workflow流水线工具,助您高效完成AI开发~》,作者:阅识风云。 Workflow(也称工作流)本质是开发者基于

动手实践丨基于ModelAtrs使用A2C算法制作登月器着陆小游戏

摘要:在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander小游戏。 本文分享自华为云社区《使用A2C算法控制登月器着陆》,作者:HWCloudAI 。 LunarLander是一款控制类的小游戏,也是强化学习中常用的例子。游戏任务为控制登月器着陆,玩家通过操作登月器的主引擎和副引

基于 Three.js 的 3D 模型加载优化

作为一个3D的项目,从用户打开页面到最终模型的渲染加载的时间也会比普通的H5项目要更长一些,从而造成大量的用户流失。为了提升首屏加载的转化率,需要尽可能的降低loading的时间。这里就分享一些我们在模型加载优化方面的心得。

基于MindSpore实现BERT对话情绪识别

本文分享自华为云社区《【昇思25天学习打卡营打卡指南-第二十四天】基于 MindSpore 实现 BERT 对话情绪识别》,作者:JeffDing。 模型简介 BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Trans

基于 Vagrant 手动部署多个 Redis Server

环境准备 宿主机环境:Windows 10 虚拟机环境:Vagrant + VirtualBox Vagrantfile 配置 首先,我们需要编写一个 Vagrantfile 来定义我们的虚拟机配置。假设已经在 D:\Vagrant\redis 目录下创建了一个 Vagrantfile,其内容如下: