张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
Python Numpy 切片和索引(高级索引、布尔索引、花式索引)
Python NumPy 广播(Broadcast)
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。
如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。
import numpy as np
"""
如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。
"""
a = np.array([1, 2, 3, 4])
b = np.array([10, 20, 30, 40])
c = a * b
print(c) # [ 10 40 90 160]
"""
当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制。如:
"""
a = np.array([[0, 0, 0],
[10, 10, 10],
[20, 20, 20],
[30, 30, 30]])
b = np.array([0, 1, 2])
print(a + b)
print('\n')
"""
4x3 的二维数组与长为 3 的一维数组相加,等效于把数组 b 在二维上重复 4 次再运算:
"""
a = np.array([[0, 0, 0],
[10, 10, 10],
[20, 20, 20],
[30, 30, 30]])
b = np.array([0, 1, 2])
bb = np.tile(b, (4, 1)) # 重复 b 的各个维度, 假设reps的维度为d,那么新数组的维度为max(d,A.ndim)
print(bb)
print(a + bb)
如果两个 Tensor 的形状的长度不一致,会在较小长度的形状矩阵前部添加 1,直到两个 Tensor 的形状长度相等。
保证两个 Tensor 形状相等之后,每个维度上的结果维度就是当前维度上的较大值。
import numpy as np
"""
如果两个 Tensor 的形状的长度不一致,会在较小长度的形状矩阵前部添加 1,直到两个 Tensor 的形状长度相等。
保证两个 Tensor 形状相等之后,每个维度上的结果维度就是当前维度上的较大值。
"""
x = np.ones([2, 1, 4])
y = np.ones((3, 1))
print('x => ', x)
print('y => ', y)
print('x+y => ', x + y)
广播的规则:
简单理解:对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足: