Pandas 使用教程 Series、DataFrame

pandas,使用,教程,series,dataframe · 浏览次数 : 168

小编点评

**一维数据** * Series:一种类似于一维数组的对象,包含一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。 **二维数据** * DataFrame:一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。 **创建 DataFrame** * pandas.DataFrame( data, index, columns, dtype, copy) * 参数: * data:一组数据(ndarray 类型)。 * index:索引值,或者可以称为行标签。 * columns:列标签,默认为 RangeIndex (0, 1, 2, …) 。 * dtype:数据类型。 * copy:拷贝数据,默认为 False。 **索引** * Series 由索引(index)和列组成,函数如下:pandas.Series( data, index, dtype, name, copy) **设置 Series 名称参数** * pandas as pdsites = {1: \"Google\", 2: \"Runoob\", 3: \"Wiki\"} * myvar = pd.Series(sites, index = [1, 2], name=\"RUNOOB-Series-TEST\" **创建 DataFrame** * pandas.DataFrame(data, columns=['Site','Age'],dtype=float) **使用字典创建 DataFrame** * import pandas as pdsites = {1: \"Google\", 2: \"Runoob\", 3: "Wiki"} * myvar = pd.Series(sites) **其他** * DataFrame 是一个二维的数组结构,类似二维数组。 * 可以使用字典(key/value)创建 DataFrame。 * DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列)。

正文

Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。

Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据)

  • Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成
  • DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。

pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple

Series (一维数据)

Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
Series 由索引(index)和列组成,函数如下:
pandas.Series( data, index, dtype, name, copy)
参数说明:

  • data:一组数据(ndarray 类型)。
  • index:数据索引标签,如果不指定,默认从 0 开始。
  • dtype:数据类型,默认会自己判断。
  • name:设置名称。
  • copy:拷贝数据,默认为 False。
import pandas as pd

a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
print(myvar[1]) # 2

image
如果没有指定索引,索引值就从 0 开始,

指定索引值

如下实例:

import pandas as pd

a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])

print(myvar)
print(myvar["y"])  # Runoob

image

使用 key/value 对象,创建对象

import pandas as pd

sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)

print(myvar)

image

设置 Series 名称参数

import pandas as pd

sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )

print(myvar)

image

DataFrame(二维数据)

DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
image
image
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:

  • data:一组数据(ndarray、series, map, lists, dict 等类型)。
  • index:索引值,或者可以称为行标签。
  • columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
  • dtype:数据类型。
  • copy:拷贝数据,默认为 False。

Pandas DataFrame 是一个二维的数组结构,类似二维数组。

import pandas as pd

data = [['Google',10],['Runoob',12],['Wiki',13]]
# data = {'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]} # 也可以这样写
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)

print(df)

image
DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列):
image

使用字典(key/value)创建

import pandas as pd

data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)

print (df)

输出

   a   b     c
0  1   2   NaN
1  5  10  20.0

loc 属性返回指定行的数据

import pandas as pd

data = {
  "calories": [420, 380, 390],
  "duration": [50, 40, 45]
}

# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)

# 返回第一行
# calories   420
# duration     50
print(df.loc[0])

# 返回第二行
# calories    380
# duration     40
print(df.loc[1])

# 返回第一行和第三行
#   calories  duration
#0       420        50
#2       390        45

print(df.loc[[0, 2]])

与Pandas 使用教程 Series、DataFrame相似的内容:

Pandas 使用教程 Series、DataFrame

[TOC] Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算) Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。 Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工

Pandas 使用教程 JSON

[TOC] Pandas 可以很方便的处理 JSON 数据 demo.json ```json [ { "name":"张三", "age":23, "gender":true }, { "name":"李四", "age":24, "gender":true }, { "name":"王五", "

Pandas 使用教程 CSV - CSV 转 JSON

目录JSON 转换为 CSVCSV 转 JSON行、列操作 CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。 CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。 A

【pandas小技巧】--DataFrame的显示参数

我们在`jupyter notebook`中使用`pandas`显示`DataFrame`的数据时,由于屏幕大小,或者数据量大小的原因,常常会觉得显示出来的表格不是特别符合预期。 这时,就需要调整`pandas`显示`DataFrame`的方式。`pandas`为我们提供了很多调整显示方式的参数,具

【pandas小技巧】--目录(完结)

`pandas`小技巧系列是介绍的是使用`pandas`分析数据时,最常用的一些操作技巧。 具体包括: 1. [创建测试数据](https://www.cnblogs.com/wang_yb/p/17552748.html) 学习pandas的过程中,为了尝试pandas提供的各类功能强大的函数,常

【pandas基础】--数据类型

数据类型是计算机编程中将不同类型的数据值分类和定义的方式。 通过数据类型,可以确定数据的存储方式和内存占用量,了解不同类型的数据进行各种运算的能力。 使用`pandas`进行数据分析时,最常用到的几种类型是: 1. 字符串类型,各类文本内容都是字符串类型 2. 数值类型,包括整数和浮点数,可用于计算

pandas:时间序列数据的周期转换

时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为例,演示如何使用pandas来进行周期转换。 1. 创建测试数据 首先创建测试数据,下面创建一天的K

【pandas小技巧】--修改列的名称

重命名 `pandas` 数据中列的名称是一种常见的数据预处理任务。这通常是因为原始数据中的列名称可能不够清晰或准确。例如,列名可能包含空格、大写字母、特殊字符或拼写错误。 使用 `pandas` 的 `rename`函数可以帮助我们更改列名,从而使数据更加清晰和易于理解。此外,重命名列名还可以确保

基于随机森林算法进行硬盘故障预测

摘要:本案例将带大家使用一份开源的S.M.A.R.T.数据集和机器学习中的随机森林算法,来训练一个硬盘故障预测模型,并测试效果。 本文分享自华为云社区《基于随机森林算法进行硬盘故障预测》,作者:HWCloudAI 。 实验目标 掌握使用机器学习方法训练模型的基本流程; 掌握使用pandas做数据分析

数据分析缺失值处理(Missing Values)——删除法、填充法、插值法

缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值。在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数中的缺失值,用NaT表示时间序列中的缺失值,此外python内置的None值也会被当作是缺失值。需要注意的是,有些缺失值也会以