Pandas 使用教程 JSON

pandas,使用,教程,json · 浏览次数 : 233

小编点评

```python import pandas as pdimport json# 使用 Python JSON 模块载入数据with open('data/nested_mix.json', 'r') as f: data = json.loads(f.read())df = pd.json_normalize( data, record_path=['students'], meta=[ 'class', ['info', 'president'], # 类似 info.president ['info', 'contacts', 'tel'] ])print(df) id name math ... class info.president info.contacts.tel0 A001 Tom 60 ... Year 1 John Kasich 1234567891 A002 James 89 ... Year 1 John Kasich 1234567892 A003 Jenny 79 ... Year 1 John Kasich 123456789[3 rows x 8 columns]读取内嵌数据中的一组数据nested_deep.json{ \"school_name\": \"local primary school\", \"class\": \"Year 1\", \"students\": [ { \"id\": \"A001\", \"name\": \"Tom\", \"grade\": { \"math\": 60, \"physics\": 66, \"chemistry\": 61 } }, { \"id\": \"A002\", \"name\": \"James\", \"grade\": { \"math\": 89, \"physics\": 76, \"chemistry\": 51 } }, { \"id\": \"A003\", \"name\": \"Jenny\", \"grade\": { \"math\": 79, \"physics\": 90, \"chemistry\": 78 } }]}这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。第一次使用我们需要安装 glom:pip3 install glom -i https://pypi.tuna.tsinghua.edu.cn/simpleimport pandas as pdfrom glom import glomdf = pd.read_json('nested_deep.json')data = df['students'].apply(lambda row: glom(row, 'grade.math'))print(data)输出:0 601 892 79.归纳总结以上内容,生成内容时需要带简单的排版

正文

Pandas 可以很方便的处理 JSON 数据

demo.json

[
    {
        "name":"张三",
        "age":23,
        "gender":true
    },
    {
        "name":"李四",
        "age":24,
        "gender":true
    },
    {
        "name":"王五",
        "age":25,
        "gender":false
    }
]

JSON 转换为 CSV

非常方便,只要通过 pd.read_json 读出JSON数据,再通过 df.to_csv 写入 CSV 即可

import pandas as pd

json_path = 'data/demo.json'

# 加载 JSON 数据
with open(json_path, 'r', encoding='utf8') as f:
    # 解析一个有效的JSON字符串并将其转换为Python字典
    df = pd.read_json(f.read())
    print(df.to_string())  # to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。
    print('-' * 10)

    # 重新定义标题
    df.columns = ['姓名', '年龄', '性别']
    print(df)

    df.to_csv('data/result.csv', index=False, encoding='GB2312')

image

简单 JSON

从 URL 中读取 JSON 数据:

import pandas as pd

URL = 'https://static.runoob.com/download/sites.json'
df = pd.read_json(URL) # 和读文件一样
print(df)

输出:

     id    name             url  likes
0  A001    菜鸟教程  www.runoob.com     61
1  A002  Google  www.google.com    124
2  A003      淘宝  www.taobao.com     45

字典转化为 DataFrame 数据

import pandas as pd

s = {
    "col1": {"row1": 1, "row2": 2, "row3": 3},
    "col2": {"row1": "x", "row2": "y", "row4": "z"}
}

df = pd.DataFrame(s)
print(df)
print('-' * 10)

new_df = df.dropna()  # 数据清洗,删除包含空数据的行
print(new_df.to_string())
print('-' * 10)

df.fillna(99, inplace=True)  # fillna() 方法来替换一些空字段
print(df.to_string())


输出:不同的行会用 NaN 填充

      col1 col2
row1   1.0    x
row2   2.0    y
row3   3.0  NaN
row4   NaN    z
----------
      col1 col2
row1   1.0    x
row2   2.0    y
----------
      col1 col2
row1   1.0    x
row2   2.0    y
row3   3.0   99
row4  99.0    z

image

内嵌的 JSON 数据

nested_list.json 嵌套的JSON数据

{
  "school_name": "ABC primary school",
  "class": "Year 1",
  "students": [
    {
      "id": "A001",
      "name": "Tom",
      "math": 60,
      "physics": 66,
      "chemistry": 61
    },
    {
      "id": "A002",
      "name": "James",
      "math": 89,
      "physics": 76,
      "chemistry": 51
    },
    {
      "id": "A003",
      "name": "Jenny",
      "math": 79,
      "physics": 90,
      "chemistry": 78
    }
  ]
}

运行代码
data = json.loads(f.read()) 使用 Python JSON 模块载入数据。
json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students。

import pandas as pd
import json

# 打印出结果JSON结构
with open('data/nested_list.json', 'r') as f:
    data = pd.read_json(f.read())
    print(data)

# 使用 Python JSON 模块载入数据
with open('data/nested_list.json', 'r') as f:
    data = json.loads(f.read())

# 展平数据-- json_normalize() 方法将内嵌的数据完整的解析出来:
df_nested_list = pd.json_normalize(data, record_path=['students'])
print(df_nested_list)

image

import pandas as pd
import json

data_path = 'data/nested_list.json'

print(('-' * 10) + ' 连同上级JSON值一起显示')
# 使用 Python JSON 模块载入数据
with open(data_path, 'r') as f:
    data = json.loads(f.read())

# 展平数据
df_nested_list = pd.json_normalize(
    data,
    record_path=['students'],
    meta=['school_name', 'class']
)
print(df_nested_list)

image

复杂 JSON

该数据嵌套了列表和字典,数据文件 nested_mix.json 如下
nested_mix.json

{
    "school_name": "local primary school",
    "class": "Year 1",
    "info": {
      "president": "John Kasich",
      "address": "ABC road, London, UK",
      "contacts": {
        "email": "admin@e.com",
        "tel": "123456789"
      }
    },
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}
import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('data/nested_mix.json', 'r') as f:
    data = json.loads(f.read())

df = pd.json_normalize(
    data,
    record_path=['students'],
    meta=[
        'class',
        ['info', 'president'],  # 类似 info.president
        ['info', 'contacts', 'tel']
    ]
)

print(df)
     id   name  math  ...   class  info.president info.contacts.tel
0  A001    Tom    60  ...  Year 1     John Kasich         123456789
1  A002  James    89  ...  Year 1     John Kasich         123456789
2  A003  Jenny    79  ...  Year 1     John Kasich         123456789

[3 rows x 8 columns]

读取内嵌数据中的一组数据
nested_deep.json

{
    "school_name": "local primary school",
    "class": "Year 1",
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "grade": {
            "math": 60,
            "physics": 66,
            "chemistry": 61
        }
 
    },
    {
        "id": "A002",
        "name": "James",
        "grade": {
            "math": 89,
            "physics": 76,
            "chemistry": 51
        }
       
    },
    {
        "id": "A003",
        "name": "Jenny",
        "grade": {
            "math": 79,
            "physics": 90,
            "chemistry": 78
        }
    }]
}

这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。

第一次使用我们需要安装 glom:
pip3 install glom -i https://pypi.tuna.tsinghua.edu.cn/simple

import pandas as pd
from glom import glom

df = pd.read_json('nested_deep.json')

data = df['students'].apply(lambda row: glom(row, 'grade.math'))
print(data)

输出:

0    60
1    89
2    79

与Pandas 使用教程 JSON相似的内容:

Pandas 使用教程 JSON

[TOC] Pandas 可以很方便的处理 JSON 数据 demo.json ```json [ { "name":"张三", "age":23, "gender":true }, { "name":"李四", "age":24, "gender":true }, { "name":"王五", "

Pandas 使用教程 CSV - CSV 转 JSON

目录JSON 转换为 CSVCSV 转 JSON行、列操作 CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。 CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。 A

Pandas 使用教程 Series、DataFrame

[TOC] Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算) Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。 Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工

【pandas小技巧】--DataFrame的显示参数

我们在`jupyter notebook`中使用`pandas`显示`DataFrame`的数据时,由于屏幕大小,或者数据量大小的原因,常常会觉得显示出来的表格不是特别符合预期。 这时,就需要调整`pandas`显示`DataFrame`的方式。`pandas`为我们提供了很多调整显示方式的参数,具

【pandas小技巧】--目录(完结)

`pandas`小技巧系列是介绍的是使用`pandas`分析数据时,最常用的一些操作技巧。 具体包括: 1. [创建测试数据](https://www.cnblogs.com/wang_yb/p/17552748.html) 学习pandas的过程中,为了尝试pandas提供的各类功能强大的函数,常

【pandas基础】--数据类型

数据类型是计算机编程中将不同类型的数据值分类和定义的方式。 通过数据类型,可以确定数据的存储方式和内存占用量,了解不同类型的数据进行各种运算的能力。 使用`pandas`进行数据分析时,最常用到的几种类型是: 1. 字符串类型,各类文本内容都是字符串类型 2. 数值类型,包括整数和浮点数,可用于计算

pandas:时间序列数据的周期转换

时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为例,演示如何使用pandas来进行周期转换。 1. 创建测试数据 首先创建测试数据,下面创建一天的K

【pandas小技巧】--修改列的名称

重命名 `pandas` 数据中列的名称是一种常见的数据预处理任务。这通常是因为原始数据中的列名称可能不够清晰或准确。例如,列名可能包含空格、大写字母、特殊字符或拼写错误。 使用 `pandas` 的 `rename`函数可以帮助我们更改列名,从而使数据更加清晰和易于理解。此外,重命名列名还可以确保

基于随机森林算法进行硬盘故障预测

摘要:本案例将带大家使用一份开源的S.M.A.R.T.数据集和机器学习中的随机森林算法,来训练一个硬盘故障预测模型,并测试效果。 本文分享自华为云社区《基于随机森林算法进行硬盘故障预测》,作者:HWCloudAI 。 实验目标 掌握使用机器学习方法训练模型的基本流程; 掌握使用pandas做数据分析

数据分析缺失值处理(Missing Values)——删除法、填充法、插值法

缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值。在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数中的缺失值,用NaT表示时间序列中的缺失值,此外python内置的None值也会被当作是缺失值。需要注意的是,有些缺失值也会以