耗时两周,新版的操作系统常见知识点/问题总结总算搞完了,手绘了30多张图。大家可以用来复习操作系统或者准备操作系统面试。对于大部分公司的面试来说基本够用了,不过,像腾讯、字节这种大厂的面试还是要适当深入一些。
这篇文章总结了一些我觉得比较重要的操作系统相关的问题比如 用户态和内核态、系统调用、进程和线程、死锁、内存管理、虚拟内存、文件系统等等。另外,这篇文章只是对一些操作系统比较重要概念的一个概览,深入学习的话,建议大家还是老老实实地去看书。
通过以下四点可以概括操作系统到底是什么:
很多人容易把操作系统的内核(Kernel)和中央处理器(CPU,Central Processing Unit)弄混。你可以简单从下面两点来区别:
下图清晰说明了应用程序、内核、CPU 这三者的关系。
从资源管理的角度来看,操作系统有 6 大功能:
目前最流行的个人桌面操作系统 ,不做多的介绍,大家都清楚。界面简单易操作,软件生态非常好。
玩玩电脑游戏还是必须要有 Windows 的,所以我现在是一台 Windows 用于玩游戏,一台 Mac 用于平时日常开发和学习使用。
最早的多用户、多任务操作系统 。后面崛起的 Linux 在很多方面都参考了 Unix。
目前这款操作系统已经逐渐逐渐退出操作系统的舞台。
Linux 是一套免费使用、开源的类 Unix 操作系统。 Linux 存在着许多不同的发行版本,但它们都使用了 Linux 内核 。
严格来讲,Linux 这个词本身只表示 Linux 内核,在 GNU/Linux 系统中,Linux 实际就是 Linux 内核,而该系统的其余部分主要是由 GNU 工程编写和提供的程序组成。单独的 Linux 内核并不能成为一个可以正常工作的操作系统。
很多人更倾向使用 “GNU/Linux” 一词来表达人们通常所说的 “Linux”。
苹果自家的操作系统,编程体验和 Linux 相当,但是界面、软件生态以及用户体验各方面都要比 Linux 操作系统更好。
根据进程访问资源的特点,我们可以把进程在系统上的运行分为两个级别:
内核态相比用户态拥有更高的特权级别,因此能够执行更底层、更敏感的操作。不过,由于进入内核态需要付出较高的开销(需要进行一系列的上下文切换和权限检查),应该尽量减少进入内核态的次数,以提高系统的性能和稳定性。
因此,同时具有用户态和内核态主要是为了保证计算机系统的安全性、稳定性和性能。
用户态切换到内核态的 3 种方式:
在系统的处理上,中断和异常类似,都是通过中断向量表来找到相应的处理程序进行处理。区别在于,中断来自处理器外部,不是由任何一条专门的指令造成,而异常是执行当前指令的结果。
我们运行的程序基本都是运行在用户态,如果我们调用操作系统提供的内核态级别的子功能咋办呢?那就需要系统调用了!
也就是说在我们运行的用户程序中,凡是与系统态级别的资源有关的操作(如文件管理、进程控制、内存管理等),都必须通过系统调用方式向操作系统提出服务请求,并由操作系统代为完成。
这些系统调用按功能大致可分为如下几类:
系统调用和普通库函数调用非常相似,只是系统调用由操作系统内核提供,运行于内核态,而普通的库函数调用由函数库或用户自己提供,运行于用户态。
总结:系统调用是应用程序与操作系统之间进行交互的一种方式,通过系统调用,应用程序可以访问操作系统底层资源例如文件、设备、网络等。
系统调用的过程可以简单分为以下几个步骤:
下图是 Java 内存区域,我们从 JVM 的角度来说一下线程和进程之间的关系吧!
从上图可以看出:一个进程中可以有多个线程,多个线程共享进程的堆和方法区 (JDK1.8 之后的元空间)资源,但是每个线程有自己的程序计数器、虚拟机栈 和 本地方法栈。
总结:
先从总体上来说:
再深入到计算机底层来探讨:
线程同步是两个或多个共享关键资源的线程的并发执行。应该同步线程以避免关键的资源使用冲突。
下面是几种常见的线程同步的方式:
synchronized
关键词和各种 Lock
都是这种机制。CyclicBarrier
是这种机制。PCB(Process Control Block) 即进程控制块,是操作系统中用来管理和跟踪进程的数据结构,每个进程都对应着一个独立的 PCB。你可以将 PCB 视为进程的大脑。
当操作系统创建一个新进程时,会为该进程分配一个唯一的进程 ID,并且为该进程创建一个对应的进程控制块。当进程执行时,PCB 中的信息会不断变化,操作系统会根据这些信息来管理和调度进程。
PCB 主要包含下面几部分的内容:
我们一般把进程大致分为 5 种状态,这一点和线程很像!
下面这部分总结参考了:《进程间通信 IPC (InterProcess Communication)》 这篇文章,推荐阅读,总结的非常不错。
这是一个很重要的知识点!为了确定首先执行哪个进程以及最后执行哪个进程以实现最大 CPU 利用率,计算机科学家已经定义了一些算法,它们是:
在 Unix/Linux 系统中,子进程通常是通过 fork()系统调用创建的,该调用会创建一个新的进程,该进程是原有进程的一个副本。子进程和父进程的运行是相互独立的,它们各自拥有自己的 PCB,即使父进程结束了,子进程仍然可以继续运行。
当一个进程调用 exit()系统调用结束自己的生命时,内核会释放该进程的所有资源,包括打开的文件、占用的内存等,但是该进程对应的 PCB 依然存在于系统中。这些信息只有在父进程调用 wait()或 waitpid()系统调用时才会被释放,以便让父进程得到子进程的状态信息。
这样的设计可以让父进程在子进程结束时得到子进程的状态信息,并且可以防止出现“僵尸进程”(即子进程结束后 PCB 仍然存在但父进程无法得到状态信息的情况)。
Linux 下可以使用 Top 命令查找,zombie
值表示僵尸进程的数量,为 0 则代表没有僵尸进程。
下面这个命令可以定位僵尸进程以及该僵尸进程的父进程:
ps -A -ostat,ppid,pid,cmd |grep -e '^[Zz]'
死锁(Deadlock)描述的是这样一种情况:多个进程/线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于进程/线程被无限期地阻塞,因此程序不可能正常终止。
假设有两个进程 A 和 B,以及两个资源 X 和 Y,它们的分配情况如下:
进程 | 占用资源 | 需求资源 |
---|---|---|
A | X | Y |
B | Y | X |
此时,进程 A 占用资源 X 并且请求资源 Y,而进程 B 已经占用了资源 Y 并请求资源 X。两个进程都在等待对方释放资源,无法继续执行,陷入了死锁状态。
{P0, P1,..., Pn}
, P0
等待的资源被 P1
占有,P1
等待的资源被 P2
占有,......,Pn-1
等待的资源被 Pn
占有,Pn
等待的资源被 P0
占有。注意 ⚠️ :这四个条件是产生死锁的 必要条件 ,也就是说只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。
下面是百度百科对必要条件的解释:
如果没有事物情况 A,则必然没有事物情况 B,也就是说如果有事物情况 B 则一定有事物情况 A,那么 A 就是 B 的必要条件。从逻辑学上看,B 能推导出 A,A 就是 B 的必要条件,等价于 B 是 A 的充分条件。
下面通过一个实际的例子来模拟下图展示的线程死锁:
public class DeadLockDemo {
private static Object resource1 = new Object();//资源 1
private static Object resource2 = new Object();//资源 2
public static void main(String[] args) {
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 1").start();
new Thread(() -> {
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource1");
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
}
}
}, "线程 2").start();
}
}
Output
Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1
线程 A 通过 synchronized (resource1)
获得 resource1
的监视器锁,然后通过Thread.sleep(1000);
让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2
的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。
解决死锁的方法可以从多个角度去分析,一般的情况下,有预防,避免,检测和解除四种。
预防 是采用某种策略,限制并发进程对资源的请求,从而使得死锁的必要条件在系统执行的任何时间上都不满足。
避免则是系统在分配资源时,根据资源的使用情况提前做出预测,从而避免死锁的发生
检测是指系统设有专门的机构,当死锁发生时,该机构能够检测死锁的发生,并精确地确定与死锁有关的进程和资源。
解除 是与检测相配套的一种措施,用于将进程从死锁状态下解脱出来。
死锁四大必要条件上面都已经列出来了,很显然,只要破坏四个必要条件中的任何一个就能够预防死锁的发生。
破坏第一个条件 互斥条件:使得资源是可以同时访问的,这是种简单的方法,磁盘就可以用这种方法管理,但是我们要知道,有很多资源 往往是不能同时访问的 ,所以这种做法在大多数的场合是行不通的。
破坏第三个条件 非抢占 :也就是说可以采用 剥夺式调度算法,但剥夺式调度方法目前一般仅适用于 主存资源 和 处理器资源 的分配,并不适用于所有的资源,会导致 资源利用率下降。
所以一般比较实用的 预防死锁的方法,是通过考虑破坏第二个条件和第四个条件。
1、静态分配策略
静态分配策略可以破坏死锁产生的第二个条件(占有并等待)。所谓静态分配策略,就是指一个进程必须在执行前就申请到它所需要的全部资源,并且知道它所要的资源都得到满足之后才开始执行。进程要么占有所有的资源然后开始执行,要么不占有资源,不会出现占有一些资源等待一些资源的情况。
静态分配策略逻辑简单,实现也很容易,但这种策略 严重地降低了资源利用率,因为在每个进程所占有的资源中,有些资源是在比较靠后的执行时间里采用的,甚至有些资源是在额外的情况下才使用的,这样就可能造成一个进程占有了一些 几乎不用的资源而使其他需要该资源的进程产生等待 的情况。
2、层次分配策略
层次分配策略破坏了产生死锁的第四个条件(循环等待)。在层次分配策略下,所有的资源被分成了多个层次,一个进程得到某一次的一个资源后,它只能再申请较高一层的资源;当一个进程要释放某层的一个资源时,必须先释放所占用的较高层的资源,按这种策略,是不可能出现循环等待链的,因为那样的话,就出现了已经申请了较高层的资源,反而去申请了较低层的资源,不符合层次分配策略,证明略。
上面提到的 破坏 死锁产生的四个必要条件之一就可以成功 预防系统发生死锁 ,但是会导致 低效的进程运行 和 资源使用率 。而死锁的避免相反,它的角度是允许系统中同时存在四个必要条件 ,只要掌握并发进程中与每个进程有关的资源动态申请情况,做出 明智和合理的选择 ,仍然可以避免死锁,因为四大条件仅仅是产生死锁的必要条件。
我们将系统的状态分为 安全状态 和 不安全状态 ,每当在未申请者分配资源前先测试系统状态,若把系统资源分配给申请者会产生死锁,则拒绝分配,否则接受申请,并为它分配资源。
如果操作系统能够保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于安全状态,否则说系统是不安全的。很显然,系统处于安全状态则不会发生死锁,系统若处于不安全状态则可能发生死锁。
那么如何保证系统保持在安全状态呢?通过算法,其中最具有代表性的 避免死锁算法 就是 Dijkstra 的银行家算法,银行家算法用一句话表达就是:当一个进程申请使用资源的时候,银行家算法 通过先 试探 分配给该进程资源,然后通过 安全性算法 判断分配后系统是否处于安全状态,若不安全则试探分配作废,让该进程继续等待,若能够进入到安全的状态,则就 真的分配资源给该进程。
银行家算法详情可见:《一句话+一张图说清楚——银行家算法》 。
操作系统教程书中讲述的银行家算法也比较清晰,可以一看.
死锁的避免(银行家算法)改善了 资源使用率低的问题 ,但是它要不断地检测每个进程对各类资源的占用和申请情况,以及做 安全性检查 ,需要花费较多的时间。
对资源的分配加以限制可以 预防和避免 死锁的发生,但是都不利于各进程对系统资源的充分共享。解决死锁问题的另一条途径是 死锁检测和解除 (这里突然联想到了乐观锁和悲观锁,感觉死锁的检测和解除就像是 乐观锁 ,分配资源时不去提前管会不会发生死锁了,等到真的死锁出现了再来解决嘛,而 死锁的预防和避免 更像是悲观锁,总是觉得死锁会出现,所以在分配资源的时候就很谨慎)。
这种方法对资源的分配不加以任何限制,也不采取死锁避免措施,但系统 定时地运行一个 “死锁检测” 的程序,判断系统内是否出现死锁,如果检测到系统发生了死锁,再采取措施去解除它。
操作系统中的每一刻时刻的系统状态都可以用进程-资源分配图来表示,进程-资源分配图是描述进程和资源申请及分配关系的一种有向图,可用于检测系统是否处于死锁状态。
用一个方框表示每一个资源类,方框中的黑点表示该资源类中的各个资源,每个键进程用一个圆圈表示,用 有向边 来表示进程申请资源和资源被分配的情况。
图中 2-21 是进程-资源分配图的一个例子,其中共有三个资源类,每个进程的资源占有和申请情况已清楚地表示在图中。在这个例子中,由于存在 占有和等待资源的环路 ,导致一组进程永远处于等待资源的状态,发生了 死锁。
进程-资源分配图中存在环路并不一定是发生了死锁。因为循环等待资源仅仅是死锁发生的必要条件,而不是充分条件。图 2-22 便是一个有环路而无死锁的例子。虽然进程 P1 和进程 P3 分别占用了一个资源 R1 和一个资源 R2,并且因为等待另一个资源 R2 和另一个资源 R1 形成了环路,但进程 P2 和进程 P4 分别占有了一个资源 R1 和一个资源 R2,它们申请的资源得到了满足,在有限的时间里会归还资源,于是进程 P1 或 P3 都能获得另一个所需的资源,环路自动解除,系统也就不存在死锁状态了。
知道了死锁检测的原理,我们可以利用下列步骤编写一个 死锁检测 程序,检测系统是否产生了死锁。
当死锁检测程序检测到存在死锁发生时,应设法让其解除,让系统从死锁状态中恢复过来,常用的解除死锁的方法有以下四种:
操作系统的内存管理非常重要,主要负责下面这些事情:
内存碎片是由内存的申请和释放产生的,通常分为下面两种:
内存碎片会导致内存利用率下降,如何减少内存碎片是内存管理要非常重视的一件事情。
内存管理方式可以简单分为下面两种:
块式管理 是早期计算机操作系统的一种连续内存管理方式,存在严重的内存碎片问题。块式管理会将内存分为几个固定大小的块,每个块中只包含一个进程。如果程序运行需要内存的话,操作系统就分配给它一块,如果程序运行只需要很小的空间的话,分配的这块内存很大一部分几乎被浪费了。这些在每个块中未被利用的空间,我们称之为内部内存碎片。除了内部内存碎片之外,由于两个内存块之间可能还会有外部内存碎片,这些不连续的外部内存碎片由于太小了无法再进行分配。
在 Linux 系统中,连续内存管理采用了 伙伴系统(Buddy System)算法 来实现,这是一种经典的连续内存分配算法,可以有效解决外部内存碎片的问题。伙伴系统的主要思想是将内存按 2 的幂次划分(每一块内存大小都是 2 的幂次比如 2^6=64 KB),并将相邻的内存块组合成一对伙伴(注意:必须是相邻的才是伙伴)。
当进行内存分配时,伙伴系统会尝试找到大小最合适的内存块。如果找到的内存块过大,就将其一分为二,分成两个大小相等的伙伴块。如果还是大的话,就继续切分,直到到达合适的大小为止。
假设两块相邻的内存块都被释放,系统会将这两个内存块合并,进而形成一个更大的内存块,以便后续的内存分配。这样就可以减少内存碎片的问题,提高内存利用率。
虽然解决了外部内存碎片的问题,但伙伴系统仍然存在内存利用率不高的问题(内部内存碎片)。这主要是因为伙伴系统只能分配大小为 2^n 的内存块,因此当需要分配的内存大小不是 2^n 的整数倍时,会浪费一定的内存空间。举个例子:如果要分配 65 大小的内存快,依然需要分配 2^7=128 大小的内存块。
对于内部内存碎片的问题,Linux 采用 SLAB 进行解决。由于这部分内容不是本篇文章的重点,这里就不详细介绍了。
非连续内存管理存在下面 3 种方式:
虚拟内存(Virtual Memory) 是计算机系统内存管理非常重要的一个技术,本质上来说它只是逻辑存在的,是一个假想出来的内存空间,主要作用是作为进程访问主存(物理内存)的桥梁并简化内存管理。
总结来说,虚拟内存主要提供了下面这些能力:
如果没有虚拟内存的话,程序直接访问和操作的都是物理内存,看似少了一层中介,但多了很多问题。
具体有什么问题呢? 这里举几个例子说明(参考虚拟内存提供的能力回答这个问题):
物理地址(Physical Address) 是真正的物理内存中地址,更具体点来说是内存地址寄存器中的地址。程序中访问的内存地址不是物理地址,而是 虚拟地址(Virtual Address) 。
也就是说,我们编程开发的时候实际就是在和虚拟地址打交道。比如在 C 语言中,指针里面存储的数值就可以理解成为内存里的一个地址,这个地址也就是我们说的虚拟地址。
操作系统一般通过 CPU 芯片中的一个重要组件 MMU(Memory Management Unit,内存管理单元) 将虚拟地址转换为物理地址,这个过程被称为 地址翻译/地址转换(Address Translation) 。
通过 MMU 将虚拟地址转换为物理地址后,再通过总线传到物理内存设备,进而完成相应的物理内存读写请求。
MMU 将虚拟地址翻译为物理地址的主要机制有两种: 分段机制 和 分页机制 。
MMU 将虚拟地址翻译为物理地址的主要机制有 3 种:
其中,现代操作系统广泛采用分页机制,需要重点关注!
分段机制(Segmentation) 以段(—段 连续 的物理内存)的形式管理/分配物理内存。应用程序的虚拟地址空间被分为大小不等的段,段是有实际意义的,每个段定义了一组逻辑信息,例如有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。
分段管理通过 段表(Segment Table) 映射虚拟地址和物理地址。
分段机制下的虚拟地址由两部分组成:
具体的地址翻译过程如下:
段表中还存有诸如段长(可用于检查虚拟地址是否超出合法范围)、段类型(该段的类型,例如代码段、数据段等)等信息。
通过段号一定要找到对应的段表项吗?得到最终的物理地址后对应的物理内存一定存在吗?
不一定。段表项可能并不存在:
分段机制容易出现外部内存碎片,即在段与段之间留下碎片空间(不足以映射给虚拟地址空间中的段)。从而造成物理内存资源利用率的降低。
举个例子:假设可用物理内存为 5G 的系统使用分段机制分配内存。现在有 4 个进程,每个进程的内存占用情况如下:
此时,我们关闭了进程 1 和进程 4,则第 1 段和第 4 段的内存会被释放,空闲物理内存还有 1.5G。由于这 1.5G 物理内存并不是连续的,导致没办法将空闲的物理内存分配给一个需要 1.5G 物理内存的进程。
分页机制(Paging) 把主存(物理内存)分为连续等长的物理页,应用程序的虚拟地址空间划也被分为连续等长的虚拟页。现代操作系统广泛采用分页机制。
注意:这里的页是连续等长的,不同于分段机制下不同长度的段。
在分页机制下,应用程序虚拟地址空间中的任意虚拟页可以被映射到物理内存中的任意物理页上,因此可以实现物理内存资源的离散分配。分页机制按照固定页大小分配物理内存,使得物理内存资源易于管理,可有效避免分段机制中外部内存碎片的问题。
分页管理通过 页表(Page Table) 映射虚拟地址和物理地址。我这里画了一张基于单级页表进行地址翻译的示意图。
在分页机制下,每个应用程序都会有一个对应的页表。
分页机制下的虚拟地址由两部分组成:
具体的地址翻译过程如下:
页表中还存有诸如访问标志(标识该页面有没有被访问过)、页类型(该段的类型,例如代码段、数据段等)等信息。
通过虚拟页号一定要找到对应的物理页号吗?找到了物理页号得到最终的物理地址后对应的物理页一定存在吗?
不一定!可能会存在 页缺失 。也就是说,物理内存中没有对应的物理页或者物理内存中有对应的物理页但虚拟页还未和物理页建立映射(对应的页表项不存在)。关于页缺失的内容,后面会详细介绍到。
以 32 位的环境为例,虚拟地址空间范围共有 2^32(4G)。假设 一个页的大小是 2^12(4KB),那页表项共有 4G / 4K = 2^20 个。每个页表项为一个地址,占用 4 字节,2^20 * 2^2/1024*1024= 4MB。也就是说一个程序啥都不干,页表大小就得占用 4M。
系统运行的应用程序多起来的话,页表的开销还是非常大的。而且,绝大部分应用程序可能只能用到页表中的几项,其他的白白浪费了。
为了解决这个问题,操作系统引入了 多级页表 ,多级页表对应多个页表,每个页表也前一个页表相关联。32 位系统一般为二级页表,64 位系统一般为四级页表。
这里以二级页表为例进行介绍:二级列表分为一级页表和二级页表。一级页表共有 1024 个页表项,一级页表又关联二级页表,二级页表同样共有 1024 个页表项。二级页表中的一级页表项是一对多的关系,二级页表按需加载(只会用到很少一部分二级页表),进而节省空间占用。
假设只需要 2 个二级页表,那两级页表的内存占用情况为: 4KB(一级页表占用) + 4KB * 2(二级页表占用) = 12 KB。
多级页表属于时间换空间的典型场景,利用增加页表查询的次数减少页表占用的空间。
为了提高虚拟地址到物理地址的转换速度,操作系统在 页表方案 基础之上引入了 **转址旁路缓存(Translation Lookasjde Buffer,TLB,也被称为快表) ** 。
在主流的 AArch64 和 x86-64 体系结构下,TLB 属于 (Memory Management Unit,内存管理单元) 内部的单元,本质上就是一块高速缓存(Cache),缓存了虚拟页号到物理页号的映射关系,你可以将其简单看作是存储着键(虚拟页号)值(物理页号)对的哈希表。
使用 TLB 之后的地址翻译流程是这样的:
由于页表也在主存中,因此在没有 TLB 之前,每次读写内存数据时 CPU 要访问两次主存。有了 TLB 之后,对于存在于 TLB 中的页表数据只需要访问一次主存即可。
TLB 的设计思想非常简单,但命中率往往非常高,效果很好。这就是因为被频繁访问的页就是其中的很小一部分。
看完了之后你会发现快表和我们平时经常在开发系统中使用的缓存(比如 Redis)很像,的确是这样的,操作系统中的很多思想、很多经典的算法,你都可以在我们日常开发使用的各种工具或者框架中找到它们的影子。
换页机制的思想是当物理内存不够用的时候,操作系统选择将一些物理页的内容放到磁盘上去,等要用到的时候再将它们读取到物理内存中。也就是说,换页机制利用磁盘这种较低廉的存储设备扩展的物理内存。
这也就解释了一个日常使用电脑常见的问题:为什么操作系统中所有进程运行所需的物理内存即使比真实的物理内存要大一些,这些进程也是可以正常运行的,只是运行速度会变慢。
这同样是一种时间换空间的策略,你用 CPU 的计算时间,页的调入调出花费的时间,换来了一个虚拟的更大的物理内存空间来支持程序的运行。
根据维基百科:
页缺失(Page Fault,又名硬错误、硬中断、分页错误、寻页缺失、缺页中断、页故障等)指的是当软件试图访问已映射在虚拟地址空间中,但是目前并未被加载在物理内存中的一个分页时,由 MMU 所发出的中断。
常见的页缺失有下面这两种:
发生上面这两种缺页错误的时候,应用程序访问的是有效的物理内存,只是出现了物理页缺失或者虚拟页和物理页的映射关系未建立的问题。如果应用程序访问的是无效的物理内存的话,还会出现 无效缺页错误(Invalid Page Fault) 。
当发生硬性页缺失时,如果物理内存中没有空闲的物理页面可用的话。操作系统就必须将物理内存中的一个物理页淘汰出去,这样就可以腾出空间来加载新的页面了。
用来选择淘汰哪一个物理页的规则叫做 页面置换算法 ,我们可以把页面置换算法看成是淘汰物物理页的规则。
页缺失太频繁的发生会非常影响性能,一个好的页面置换算法应该是可以减少页缺失出现的次数。
常见的页面置换算法有下面这 5 种(其他还有很多页面置换算法都是基于这些算法改进得来的):
FIFO 页面置换算法性能为何不好?
主要原因主要有二:
哪一种页面置换算法实际用的比较多?
LRU 算法是实际使用中应用的比较多,也被认为是最接近 OPT 的页面置换算法。
不过,需要注意的是,实际应用中这些算法会被做一些改进,就比如 InnoDB Buffer Pool( InnoDB 缓冲池,MySQL 数据库中用于管理缓存页面的机制)就改进了传统的 LRU 算法,使用了一种称为"Adaptive LRU"的算法(同时结合了 LRU 和 LFU 算法的思想)。
共同点 :
区别 :
结合了段式管理和页式管理的一种内存管理机制,把物理内存先分成若干段,每个段又继续分成若干大小相等的页。
在段页式机制下,地址翻译的过程分为两个步骤:
要想更好地理解虚拟内存技术,必须要知道计算机中著名的 局部性原理(Locality Principle)。另外,局部性原理既适用于程序结构,也适用于数据结构,是非常重要的一个概念。
局部性原理是指在程序执行过程中,数据和指令的访问存在一定的空间和时间上的局部性特点。其中,时间局部性是指一个数据项或指令在一段时间内被反复使用的特点,空间局部性是指一个数据项或指令在一段时间内与其相邻的数据项或指令被反复使用的特点。
在分页机制中,页表的作用是将虚拟地址转换为物理地址,从而完成内存访问。在这个过程中,局部性原理的作用体现在两个方面:
总之,局部性原理是计算机体系结构设计的重要原则之一,也是许多优化算法的基础。在分页机制中,利用时间局部性和空间局部性,采用缓存和预取技术,可以提高页面的命中率,从而提高内存访问效率
文件系统主要负责管理和组织计算机存储设备上的文件和目录,其功能包括以下几个方面:
在 Linux/类 Unix 系统上,文件链接(File Link)是一种特殊的文件类型,可以在文件系统中指向另一个文件。常见的文件链接类型有两种:
1、硬链接(Hard Link)
ln
命令用于创建硬链接。2、软链接(Symbolic Link 或 Symlink)
ln -s
命令用于创建软链接。我们之前提到过,硬链接是通过 inode 节点号建立连接的,而硬链接和源文件共享相同的 inode 节点号。
然而,每个文件系统都有自己的独立 inode 表,且每个 inode 表只维护该文件系统内的 inode。如果在不同的文件系统之间创建硬链接,可能会导致 inode 节点号冲突的问题,即目标文件的 inode 节点号已经在该文件系统中被使用。
磁盘调度算法是操作系统中对磁盘访问请求进行排序和调度的算法,其目的是提高磁盘的访问效率。
一次磁盘读写操作的时间由磁盘寻道/寻找时间、延迟时间和传输时间决定。磁盘调度算法可以通过改变到达磁盘请求的处理顺序,减少磁盘寻道时间和延迟时间。
常见的磁盘调度算法有下面这 6 种(其他还有很多磁盘调度算法都是基于这些算法改进得来的):
给我们带来最直接的感受是:看似前景很美好,实质上却很卷。最应该反思和总结的是:尊重价值规律,在价值规律的原则下做事是否具备合理性,这是走的更远的基本保障,但是又很难做到。