从源代码构建TensorFlow流程记录

源代码,构建,tensorflow,流程,记录 · 浏览次数 : 22

小编点评

排版内容需要按照以下顺序排列: 1. 排版标题 2. 排版内容 3. 排版内容 4. 排版标题 5. 排版内容 6. 排版内容 7. 排版标题 8. 排版内容 9. 排版标题 10. 排版内容 排版标题需要按照以下顺序排列: 1. 标题 2. 标题 3. 标题 4. 标题 5. 标题 排版内容需要按照以下顺序排列: 1. 标题 2. 内容 3. 标题 4. 内容 5. 标题 6. 内容 7. 标题 8. 内容 9. 标题 10. 内容

正文

京东科技隐私计算产品部 曹雨晨

为什么从源代码构建

通常情况下,直接安装构建好的.whl即可。不过,当需要一些特殊配置(或者闲来无事想体会 TensorFlow 构建过程到底有多麻烦)的时候,则需要选择从源代码构建TensorFlow。万幸文档混乱的 TensorFlow 还是好心地为我们提供了一整页的文档供参考 https://www.tensorflow.org/install/source?hl=zh-cn ,个人认为其中最需要关注的部分莫过于经过测试供参考的源配置(列于文末)。TF使用 Google 的开源构建工具 bazel 构建,并且源码的版本与 bazel 的版本高度相关,所以尽量匹配版本进行构建。

流程记录 TF v1.14.0 CPU on Ubuntu 18.04

安装对应版本的 bazel

根据计划构建的版本,查阅文末的对应配置,参考官方文档: https://bazel.build/install/ubuntu 安装相应版本的 bazel,如本次计划构建的版本是 v1.14.0,对应的 bazel 版本是 0.24.1(此次使用0.26.1也是可以的)。

为方便,这里直接贴出对应 0.26.1 release 的页面: https://github.com/bazelbuild/bazel/releases?expanded=true&page=2&q=0.26.1 ,点击assets找到对应的文件下载即可。

wget https://github.com/bazelbuild/bazel/releases/download/0.26.1/bazel-0.26.1-installer-linux-x86_64.sh
chmod +x bazel-version-installer-linux-x86_64.sh
./bazel-version-installer-linux-x86_64.sh --user

克隆 TensorFlow 仓库

从 Github 上 clone 源码仓库

git clone https://github.com/tensorflow/tensorflow 

cd 到仓库目录并 git checkout到相应 tag,比如这次是构建 v1.14.0 版本:

git checkout v1.14.0

* 一些小调整,通常可以略过

Build with C++17

因为之后需要写的 Custom OP 依赖的另一个库是 C++17,而除了刚刚才发布的 v2.10 版,以前的 TF默认是使用 C++11,实际构建的时候,代码有一些 minor fix。此处参考 https://github.com/tensorflow/tensorflow/pull/30836/files 修改 .bazelrc build:c++17 的配置,在 tensorflow/core/lib/gif/gif_io.cc 中添加 #include<cstring>, 并在 tensorflow/stream_executor/stream_executor_pimpl.h 中添加 #include "absl/memory/memory.h"(否则 compile 时会报错找不到 absl::make_unique)(这里 make_unique 是 C++17 标准库里的用法,Google的abseil的make_unique方法则方便C++11的代码也可以使用它;最新的v2.10版由于默认使用C++17,已经改为std::make_unique)

.bazelrc 文件里记录了构建时各种配置选项 ([--config=option])的映射规则,如有需要可以进行修改。由于 GCC 不支持--stdlib命令,此次修改如下:

  # Build TF with C++ 17 features.
- build:c++17 --cxxopt=-std=c++1z
- build:c++17 --cxxopt=-stdlib=libc++
+ build:c++17 --cxxopt=-std=c++17

网络不通

Bazel 在构建过程中,需要现拉取远程仓库的许多依赖。由于 TF 的构建过程消耗内存很严重,选择在服务器上进行构建,而服务器远程拉取 github 上仓库经常失败。所以需要手动在网络良好的机器上下载相应的库的 release (对应的版本在 WORKSPACE 文件中可以找到一行注释),存放在服务器本地,并在 WORKSPACE 文件中对应的 http_archive 部分添加一行本地地址。若需要换版本,也可以在相应github库的releases下面找到对应的 URL 及 sha256(实在是找不到对应的也可以手动下载压缩包后通过 shasum256 命令获取)

例如:

http_archive(
 name = "build_bazel_rules_apple",
 sha256 = "a045a436b642c70fb0c10ca84ff0fd2dcbd59cc89100d597a61e8374afafb366",
 urls = ["https://github.com/bazelbuild/rules_apple/releases/download/0.18.0/rules_apple.0.18.0.tar.gz",
         "file:///opt/tensorflow_build_deps/rules_apple.0.18.0.tar.gz"],
) # https://github.com/bazelbuild/rules_apple/releases

配置 build

运行源码根目录下的 ./configure 进行配置。

./configure

此次编译一个尽量简略的 CPU 版本,会话如下:

WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown".
You have bazel 0.26.1 installed.
Please specify the location of python. [Default is /usr/local/bin/python]:
 
 
Found possible Python library paths:
  /usr/local/lib/python3.6/dist-packages
  /usr/lib/python3/dist-packages
Please input the desired Python library path to use.  Default is [/usr/local/lib/python3.6/dist-packages]
 
Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n
No XLA JIT support will be enabled for TensorFlow.
 
Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow.
 
Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow.
 
Do you wish to build TensorFlow with CUDA support? [y/N]: n
No CUDA support will be enabled for TensorFlow.
 
Do you wish to download a fresh release of clang? (Experimental) [y/N]: n
Clang will not be downloaded.
 
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]:
 
 
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds.
 
Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
    --config=mkl            # Build with MKL support.
    --config=monolithic     # Config for mostly static monolithic build.
    --config=ngraph         # Build with Intel nGraph support.
    --config=numa           # Build with NUMA support.
    --config=dynamic_kernels    # (Experimental) Build kernels into separate shared objects.
    --config=v2             # Build TensorFlow 2.x instead of 1.x.
Preconfigured Bazel build configs to DISABLE default on features:
    --config=noaws          # Disable AWS S3 filesystem support.
    --config=nogcp          # Disable GCP support.
    --config=nohdfs         # Disable HDFS support.
    --config=nonccl         # Disable NVIDIA NCCL support.
Configuration finished

构建 pip 软件包并安装

官方提供的命令:

bazel build [--config=option] //tensorflow/tools/pip_package:build_pip_package

本次使用:

bazel build --config=c++17 --config=c++1z --jobs=6 //tensorflow/tools/pip_package:build_pip_package

其中使用的 --config=c++17 --config=c++1z 对应刚刚修改的 .bazelrc 文件中相应的部分

注意:bazel build 的过程时间会比较长,对内存的消耗较大,jobs 数谨慎开大。

bazel build 结束后,一个名为 build_pip_package 的可执行文件就创建好了,接下来可以执行:

./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

如果希望构建的whl名为 tf-nightly 版本,则可以加上 --nightly_flag 的选项。

./bazel-bin/tensorflow/tools/pip_package/build_pip_package --nightly_flag /tmp/tensorflow_pkg

此后便获得了 .whl 文件,通过 pip 安装即可:

pip install /tmp/tensorflow_pkg/tensorflow-[version]-[tags].whl

其中,version是对应的版本,tags与系统有关。

经过测试的源配置

Linux

CPU

版本 Python 版本 编译器 构建工具
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0
tensorflow-2.1.0 2.7、3.5-3.7 GCC 7.3.1 Bazel 0.27.1
tensorflow-2.0.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1
tensorflow-1.15.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1
tensorflow-1.14.0 2.7、3.3-3.7 GCC 4.8 Bazel 0.24.1
tensorflow-1.13.1 2.7、3.3-3.7 GCC 4.8 Bazel 0.19.2
tensorflow-1.12.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.11.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.10.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.9.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.11.0
tensorflow-1.8.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.7.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.6.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.9.0
tensorflow-1.5.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.8.0
tensorflow-1.4.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.5.4
tensorflow-1.3.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.2.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.1.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2
tensorflow-1.0.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2

GPU

版本 Python 版本 编译器 构建工具 cuDNN CUDA
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0 8.0 11.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0 7.6 10.1
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0 7.6 10.1
tensorflow-2.1.0 2.7、3.5-3.7 GCC 7.3.1 Bazel 0.27.1 7.6 10.1
tensorflow-2.0.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.15.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.14.0 2.7、3.3-3.7 GCC 4.8 Bazel 0.24.1 7.4 10.0
tensorflow_gpu-1.13.1 2.7、3.3-3.7 GCC 4.8 Bazel 0.19.2 7.4 10.0
tensorflow_gpu-1.12.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.11.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.10.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.9.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.11.0 7 9
tensorflow_gpu-1.8.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.10.0 7 9
tensorflow_gpu-1.7.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.6.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.5.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.8.0 7 9
tensorflow_gpu-1.4.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.5.4 6 8
tensorflow_gpu-1.3.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5 6 8
tensorflow_gpu-1.2.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5 5.1 8
tensorflow_gpu-1.1.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8

macOS

CPU

版本 Python 版本 编译器 构建工具
tensorflow-2.6.0 3.6-3.9 Xcode 10.11 中的 Clang Bazel 3.7.2
tensorflow-2.5.0 3.6-3.9 Xcode 10.11 中的 Clang Bazel 3.7.2
tensorflow-2.4.0 3.6-3.8 Xcode 10.3 中的 Clang Bazel 3.1.0
tensorflow-2.3.0 3.5-3.8 Xcode 10.1 中的 Clang Bazel 3.1.0
tensorflow-2.2.0 3.5-3.8 Xcode 10.1 中的 Clang Bazel 2.0.0
tensorflow-2.1.0 2.7、3.5-3.7 Xcode 10.1 中的 Clang Bazel 0.27.1
tensorflow-2.0.0 2.7、3.5-3.7 Xcode 10.1 中的 Clang Bazel 0.27.1
tensorflow-2.0.0 2.7、3.3-3.7 Xcode 10.1 中的 Clang Bazel 0.26.1
tensorflow-1.15.0 2.7、3.3-3.7 Xcode 10.1 中的 Clang Bazel 0.26.1
tensorflow-1.14.0 2.7、3.3-3.7 Xcode 中的 Clang Bazel 0.24.1
tensorflow-1.13.1 2.7、3.3-3.7 Xcode 中的 Clang Bazel 0.19.2
tensorflow-1.12.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.15.0
tensorflow-1.11.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.15.0
tensorflow-1.10.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.15.0
tensorflow-1.9.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.11.0
tensorflow-1.8.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.10.1
tensorflow-1.7.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.10.1
tensorflow-1.6.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.8.1
tensorflow-1.5.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.8.1
tensorflow-1.4.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.5.4
tensorflow-1.3.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.5
tensorflow-1.2.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.5
tensorflow-1.1.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2
tensorflow-1.0.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2

GPU

版本 Python 版本 编译器 构建工具 cuDNN CUDA
tensorflow_gpu-1.1.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2 5.1 8

与从源代码构建TensorFlow流程记录相似的内容:

从源代码构建TensorFlow流程记录

通常情况下,直接安装构建好的.whl即可。不过,当需要一些特殊配置(或者闲来无事想体会 TensorFlow 构建过程到底有多麻烦)的时候,则需要选择从源代码构建TensorFlow。万幸文档混乱的 TensorFlow 还是好心地为我们提供了一整页的文档供参考

[转帖]2.构建和安装Erlang / OTP | 2. Building and Installing Erlang/OTP

http://www.verydoc.net/erlang20/00002791.html 2.1简介 本文档介绍如何构建和安装Erlang/OTP-20。Erlang/OTP应该可以在任何Unix/Linux系统(包括OS X)上从源代码构建。建议您在尝试构建和安装Erlang/OTP之前阅读整个

SaaS化开源项目之HouseKeeper云上部署实践

摘要:华为云DTSE技术专家从源码构建、应用部署到系统调测,详细解读云原生SaaS应用构建的全过程。 本文分享自华为云社区《HouseKeeper云上部署实践》,作者:华为云DTSE。 HouseKeeper是华为云开发者团队基于SaaS项目技术支持实践,采用微服务架构(SpringCloud),结

从原理聊 JVM(五):JVM 的编译过程和优化手段

# **一、前端编译** 前端编译就是将Java源码文件编译成Class文件的过程,编译过程分为4步: ## **1 准备** 初始化插入式注解处理器(Annotation Processing Tool)。 ## **2 解析与填充符号表** 将源代码的字符流转变为标记(Token)集合,构造出`

从Spring源码看Spring如何解决循环引用的问题

# Spring如何解决循环引用的问题 关于循环引用,首先说一个结论: Spring能够解决的情况为:**两个对象都是单实例、且通过set方法进行注入**。 两个对象都是单实例,通过构造方法进行注入,Spring不能进行循环引用问题; 两个对象都是多实例的情况下,不管是set注入,还是构造注入,都不

使用 docker 打包构建部署 Vue 项目,一劳永逸解决node-sass安装问题

> 文章源于 Jenkins 构建 Vue 项目失败,然后就把 node_modules 删了重新构建发现 node-sass 安装不上了,折腾一天终于可以稳定构建了。 > 犹记得从学 node 的第一天,就被 node-sass 折磨了一整天,后面本地没问题了然后服务器开始折磨了,这次又遇到,尝试

创建Avalonia 模板项目-基础

# 创建Avalonia 模板项目-基础 Avalonia是一个跨平台的.NET框架,用于构建漂亮、现代的图形用户界面(GUI)。使用Avalonia,您可以从单个代码库创建适用于Windows、macOS、 Linux、iOS、Android和Web Assembly的原生应用程序。 本文部分内容

零代码,让业务人员实现应用创造自由

摘要:以汽车营销场景为例,从AppCube零代码和业务大屏入手,帮助开发者更好地理解AppCube低代码和零代码异同点,在实际使用时能更快选取更合适的工具能力,实现应用构建效率最大化。 本文分享自华为云社区《DTT第8期直播回顾 | 零代码,让业务人员实现应用创造自由》,作者:华为云社区精选 。 本

Jenkins Pipeline 流水线 - 拉代码(SVN) + Maven 编译打包

Jenkins Pipeline 流水线 步骤 拉取SVN代码 -> Maven 构建 -> Docker 编译 -> 发布至阿里云仓库 -> K8S 更新 Jenkins插件安装 Localization: Chinese (Simplified) Subversion 【2.16.0】 --从S

构建基于Java Spring Boot和Uniapp的心理小程序:从零到一的完整指南

构建基于Java Spring Boot和Uniapp的心理小程序:从零到一的完整指南 前言 大家好,今天我们来聊聊如何使用Java Spring Boot和Uniapp构建一个心理小程序。这个项目不仅能帮助你提升技术水平,还能为用户提供心理健康支持。我们将从项目的整体架构开始,逐步深入到具体的代码