【团队效率提升】Python-PyWebIO介绍

团队,效率,提升,python,pywebio,介绍 · 浏览次数 : 143

小编点评

**生成内容时需要带简单的排版** **1.使用标签选择** ```python risk_value = input_group( "risk_value", [ input("风险值A(默认-10)?", name="user_risk", type=NUMBER), input("风险值B(默认-10)?", name="pp_risk", type=NUMBER), ], ) ``` **2.将标签选取应用** ```python df_updated = df[(df['风险值A'] >=user_risk)|((df['风险值B'] >=pp_risk))] ``` **3.将标签选取应用到表格** ```python table1 = raw_data_upated.groupby('指标').账号.count().reset_index() table1['占比'] = table1.账号 / len(raw_data_upated.账号.unique()) * 100 table1.sort_values('占比', ascending=False, inplace=True) ``` **4.将标签选取应用到表格导出** ```python put_html(table1.to_html()) ``` **5.使用标签选择导出** ```python def Save0(): put_markdown("You click Save button, Done\").show() raw_data_upated.to_excel(os.getcwd() + "\\" + "输出的风险明细.xlsx", index=False) put_markdown("find your file on 程序同级文件夹下的 文件 : 输出的风险明细.xlsx\").show() ``` **6.使用标签选择导出到指定文件** ```python save_path = input("Enter save path: ") save0() ```

正文

作者:京东零售 关键

Q&A快速了解PyWebIO

Q:首先,什么是PyWebIO?

APyWebIO提供了一系列命令式的交互函数,能够让咱们用只用Python就可以编写 Web 应用, 不需要编写前端页面和后端接口, 让简易的UI开发效率大大提高(本人非研发,用词可能不妥,大家轻点喷)

Q:其次,我们能用来干嘛?? 这对一个团队的效率提升有什么作用??

APywebio的作用在于让咱们可以快速的开发一个带有UI界面的,支持用户输入的,以既定的逻辑输出结果的应用。 那么,我们是不是可以将团队内一些机械性的数据处理,数据异动分析等的工作以既定逻辑的方式通过Pywebio输出一个可复用的应用给大家使用呢? 当然,日常的数据运营过程中,咱们肯定不是面对着一成不变的case。 那么,我们是不是可以用不同参数输入的方式来达到一定的泛用性拓展呢? 只要,case和case之间的底层逻辑是一致的,我们就可以用同一套逻辑,不同的入参来达到不同结果输出的获取。

Exampl 倘若,我们每天都有一项工作,每天对着一份又一份业务反馈的订单,然后部门需要对着这些订单本身进行一个初步的风险分层,我们是不是可以把风险分层的底层规则写在后端,然后通过PywebIO来支持不同情况下的不同规则阈值输入, 快速获取咱们所需要的风险分层结果。 (当然,如果数据允许,直接写SQL也可以,可是,SQL需要一定的门槛,而PywebIO则可以通过UI的方式分享给那些没有技术背景的运营人员进行0代码使用。)

以下正式开始用一个例子来逐步介绍PywebIO拓展包

简介

虚拟背景: 每天需要一份又一份地对业务反馈的样本来进行风险分层,为了提高处理效率。

计划方案: 通过现有风险标签的波尔标签,非波尔标签体系来搭建一个支持 灵活配置阈值来快速获取分层结果的UI应用。

方案简介:基本逻辑如下,(以下均为举例所示,并不代表该方案就可以进行风险分层哈,大家请注意)

开始实现:这里的例子采取的是非数据库模式,支持的是上传本地csv,然后进行阈值配置。

Step one:本地文件上传

首先,肯定是得先文件上传的代码。

##例子如下:
import pandas as pd
from pywebio.input import *
from pywebio import start_server
from pywebio.output import *
import nest_asyncio
import numpy as np
import os
import time

nest_asyncio.apply()

import pandas as pd
from pywebio.input import *
from pywebio import start_server
from pywebio.output import *
import nest_asyncio
import numpy as np
import os
import time

nest_asyncio.apply()

def read_csv():
    put_markdown('# 只支持pin') 
    put_markdown('功能如下:')
    put_markdown("""
- 选择与程序再**同一文件夹**的文件
- 输入你希望卡的风险值阈值 **不输入则默认-10**
- 自动加载解析输出极黑标签占比以及明细数据
- 请勾选你所需要的标签**(不勾选=全选)**,然后点击提交即可
    """)

    file = file_upload('只支持上传该程序所在文件夹的csv文件哦', '.csv')

    ## 本地文件
    
    raw_data = pd.read_csv(os.getcwd() + "\" + file['filename'], encoding='gbk')
    put_html(raw_data.to_html())
    
if __name__ == '__main__':

    start_server(read_csv, port=8081, debug=True, cdn=False, auto_open_webbrowser=True)

允许代码后,因为” auto_open_webbrowser=True“,所以自动弹出一个WebUI,如下左图,选择上传的文件,即可看到下右图的文件数据

👉

Step two:风险值卡控

第一步也只是上传文件,展示文件,还没达到咱们的目的。 所以,第二步则是需要对上传的csv本身进行数据处理,逻辑判断。 这里其实很好理解,在step one 中已经获取了上传的文件且转成dataframe了对吧,那么实际,咱们只需要沿用咱们熟悉的pandans对dataframe进行处理即可。

import pandas as pd
from pywebio.input import *
from pywebio import start_server
from pywebio.output import *
import nest_asyncio
import numpy as np
import os
import time

nest_asyncio.apply()

def 配置规则_风险值阈值(df, user_risk, pp_risk=None):
    
    df_updated = df[(df['风险值A'] >=user_risk)|((df['风险值B'] >=pp_risk))]   

    return df_updated

def read_csv():
    put_markdown('# 只支持pin') 
    put_markdown('功能如下:')
    put_markdown("""
- 选择与程序再**同一文件夹**的文件
- 输入你希望卡的风险值阈值 **不输入则默认-10**
- 自动加载解析输出极黑标签占比以及明细数据
- 请勾选你所需要的标签**(不勾选=全选)**,然后点击提交即可
    """)

    file = file_upload('只支持上传该程序所在文件夹的csv文件哦', '.csv')

    ## 本地文件

    data = []
    raw_data = pd.read_csv(os.getcwd() + "\" + file['filename'], encoding='gbk')
    put_html(raw_data.to_html())

## -------------------------- 下面是 step two 新增的代码 -------------------------- 

    risk_value = input_group(
    "risk_value",
    [
        input("风险值A(默认-10)?", name="user_risk", type=NUMBER),
        input("风险值B(默认-10)?", name="pp_risk", type=NUMBER)
    ],
    )
    
    raw_data_upated = 配置规则_风险值阈值(raw_data,risk_value['user_risk'], risk_value['pp_risk'])

    table1 = raw_data_upated.groupby('指标').账号.count().reset_index()
    table1['占比'] = table1.账号 / len(raw_data_upated.账号.unique()) * 100
    table1.sort_values('占比', ascending=False, inplace=True)
    put_html(table1.to_html())

## -------------------------- 上面是 step two 新增的代码 -------------------------- 
    
if __name__ == '__main__':

    start_server(read_csv, port=8081, debug=True, cdn=False, auto_open_webbrowser=True)

👉

Step Three: 标签卡控

从第二步,我们已经完成了风险值阈值的卡控,然后第三步就是标签的选取了。从对标签的理解和应用经验以及第二步得到的标签在样本中的占比,咱们就可以快速的知道,这个样本里面的标签分布分别是什么。进一步可以通过标签的选取达到最终符合我们风险分层结果中有风险的那一部分的输出了

import pandas as pd
from pywebio.input import *
from pywebio import start_server
from pywebio.output import *
import nest_asyncio
import numpy as np
import os
import time

nest_asyncio.apply()

def 配置规则_风险值阈值(df, user_risk, pp_risk=None):
    
    df_updated = df[(df['风险值A'] >=user_risk)|((df['风险值B'] >=pp_risk))]   

    return df_updated

def read_csv():
    put_markdown('# 只支持pin') 
    put_markdown('功能如下:')
    put_markdown("""
- 选择与程序再**同一文件夹**的文件
- 输入你希望卡的风险值阈值 **不输入则默认-10**
- 自动加载解析输出极黑标签占比以及明细数据
- 请勾选你所需要的标签**(不勾选=全选)**,然后点击提交即可
    """)

    file = file_upload('只支持上传该程序所在文件夹的csv文件哦', '.csv')

    ## 本地文件

    data = []
    raw_data = pd.read_csv(os.getcwd() + "\" + file['filename'], encoding='gbk')
    put_html(raw_data.to_html())

    risk_value = input_group(
    "risk_value",
    [
        input("风险值A(默认-10)?", name="user_risk", type=NUMBER),
        input("风险值B(默认-10)?", name="pp_risk", type=NUMBER)
    ],
    )
    
    raw_data_upated = 配置规则_风险值阈值(raw_data,risk_value['user_risk'], risk_value['pp_risk'])
    
    
    table1 = raw_data_upated.groupby('指标').账号.count().reset_index()
    table1['占比'] = table1.账号 / len(raw_data_upated.账号.unique()) * 100
    table1.sort_values('占比', ascending=False, inplace=True)
    put_html(table1.to_html())
    
    ## -------------------------- 下面是 step three 新增的代码 -------------------------- 
    
    set_list = raw_data_upated.指标.unique()
    
    list_save = checkbox(label='勾选保留的标签,不勾选=全选', options=set_list, inline=True)
    if list_save == []:
        list_save = set_list
    else:
        list_save = list_save
    raw_data_upated = raw_data_upated[raw_data_upated.指标.isin(list_save)]
    put_html(raw_data_upated.to_html())

    def Save0():
        put_markdown("You click Save button, Done").show()
        raw_data_upated.to_excel(os.getcwd() + "\" + '输出的风险明细.xlsx', index=False)
        
    put_markdown("find your file on 程序同级文件夹下的 文件 : 输出的风险明细.xlsx").show()
    put_buttons(['下载文件"对内不对外输出明细.xlsx"'], onclick=[Save0]).show()
        
    ## -------------------------- 上面是 step three 新增的代码 -------------------------- 
    
if __name__ == '__main__':

    start_server(read_csv, port=8081, debug=True, cdn=False, auto_open_webbrowser=True)

👉

总结

这里只是举了个简单的例子,一个支持阈值+标签卡控,快速获取符合要求的目标群体的例子。 实际上,这个框架的拓展还有很多。例如:

1.直连数据库,可以帮住那些不会sql的同事可以自定义快速获取业务数据。

2.Pyinstaller封装成本地程序,脱离代码环境,可以在任意电脑,任意环境,任意人士进行使用。

希望这个例子可以帮助到大家,感谢大家的耐心读取

与【团队效率提升】Python-PyWebIO介绍相似的内容:

【团队效率提升】Python-PyWebIO介绍

PyWebIO 提供了一系列命令式的交互函数,能够让咱们用只用 Python 就可以编写 Web 应用, 不需要编写前端页面和后端接口, 让简易的 UI 开发效率大大提高

【效率提升】maven 转 gradle 实战

gradle是一个打包工具, 是一个开源构建自动化工具,足够灵活,可以构建几乎任何类型的软件,高性能、可扩展、能洞察等。其中洞察,可以用于分析构建过程中数据,提供分析参考,方便排查问题和不断优化构建性能,以下一次编译分析报告。

京东门详一码多端探索与实践

本文主要讲述京东门详业务在支撑过程中遇到的困境,面对问题我们在效率提升、质量保障等方向的探索和实践,在此将实践过程中问题解决的思路和方案与大家一起分享,也希望能给大家带来一些新的启发

项目实战:在线报价采购系统(React +SpreadJS+Echarts)

小伙伴们对采购系统肯定不陌生,小到出差路费、部门物资采购;大到生产计划、原料成本预估都会涉及到该系统。 管理人员可以通过采购系统减少管理成本,说是管理利器毫不过分,对于采购的效率提升也有极大帮助。 但是对于大多数制造业企业而言,具有企业级整体视角的管理人才仍然难得,系统化的思考方式、解决复杂业务管理

【提升团队运营效率】交易履约之订单中心实践

本文作者:京东科技-市场与平台运营中心-平台研发部,晏银喜、张学君、袁宝龙、高传江、杨迎心、游斌平、付达。 特别感谢:杨广兴、张然、姬英泽、赵宁、张彤,在系统建设过程中的贡献。 1、概述 1.1 交易履约是什么? 首先定义下什么是交易履约,交易履约是在甲乙双方达成交易产生订单后,乙方按照订单条款为甲

推荐!十个平台工程工具助力开发人员提升效率和体验

平台工程是为软件开发人员创建高效生态系统的过程,帮助他们自主执行软件开发生命周期的端到端操作。平台工程旨在减少开发人员的整体认知负荷并消除流程中的瓶颈,让开发团队的体验更佳。平台工程工具通过改善开发人员体验来支持开发人员。通过消除瓶颈并减少日常摩擦来帮助开发人员完成工作,这意味着开发人员最终可以用更

敏捷价值流管理

唉?团队的效率好像并没有提升啊,这不和以前一样吗……

低代码助力微信小程序对接,提升开发效率

本文由葡萄城技术团队原创并首发。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 微信小程序相信大家都用过,相较于APP,微信小程序的优势在于其便捷性,只需要下载一个微信就可以访问所有的小程序,因此许多开发者也逐渐将自己开发的系统部署到微信小程序上以供

窗口函数实战指南:轻松掌握排名计算技巧,提升数据处理效率

> 摘要:本文由葡萄城技术团队于博客园原创并首发。转载请注明出处:[葡萄城官网](https://www.grapecity.com.cn/),葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 # 前言 SQL语句中,聚合函数在统计业务数据结果时起到了重要作用,比如计算每个业务地区的业

提升80%上云集成效率, TA是如何做到的

摘要:基于华为云开天aPaaS,提升80%上云集成效率,降低50%集成成本 没有充足资金,没有足够的项目规划和过渡时间,也没有经验丰富的IT团队支持,中小企业的上云路可谓是困难重重。如何帮助企业高效上云、实现降本增效的目标,是深圳市商软信息科技有限公司(以下简称“商软”)一直在探索的课题。 过去的三