慧销平台ThreadPoolExecutor内存泄漏分析

平台,threadpoolexecutor,内存,泄漏,分析 · 浏览次数 : 269

小编点评

**线程池管理** **初始化** * 创建线程池Executor * 创建线程池Executor的线程池 * 设置线程池大小 * 初始化线程池Executor **运行** * 提交新提交的任务 * 执行任务 * 监控任务完成情况 * 关闭线程池 **关闭** * 关闭线程池Executor * 关闭线程池Executor的线程池 * 关闭线程池Executor的背景worker **线程池对象管理** * 线程池对象是stoppable的,不能被GC回收 * 线程池对象可以被创建和关闭 * 线程池对象可以被设置大小 * 线程池对象可以被设置背景 worker **线程池优化** * 使用缓存机制来缓存任务 * 使用线程池的创建和关闭方法来减少创建和关闭线程池的成本 * 使用线程池的设置大小来减少线程池的创建和关闭成本 * 使用线程池的背景 worker来减少线程池的创建和关闭成本 **问题** * 线程池对象是否会被GC回收? * 线程池对象如何被GC回收? * 如何关闭线程池? * 线程池中线程的引用关系如何被回收?

正文

作者:京东零售 冯晓涛

问题背景

京东生旅平台慧销系统,作为平台系统对接了多条业务线,主要进行各个业务线广告,召回等活动相关内容与能力管理。

最近根据告警发现内存持续升高,每隔2-3天会收到内存超过阈值告警,猜测可能存在内存泄漏的情况,然后进行排查。根据24小时时间段内存监控可以发现,容器的内存在持续上升:

问题排查

初步估计内存泄漏,查看24小时时间段jvm内存监控,排查jvm内存回收情况:

YoungGC和FullGC情况:

通过jvm内存分析和YoungGC与FullGC执行情况,可以判断可能原因如下:

1、 存在YoungGC但是没有出现FullGC,可能是对象进入老年代但是没有到达FullGC阈值,所以没有触发FullGC,对象一直存在老年代无法回收

2、 存在内存泄漏,虽然执行了YoungGC,但是这部分内存无法被回收

通过线程数监控,观察当前线程情况,发现当前线程数7427个,并且还在不断上升,基本判断存在内存泄漏,并且和线程池的不当使用有关:

通过JStack,获取线程堆栈文件并进行分析,排查为什么会有这么多线程:

发现通过线程池创建的线程数达7000+:

代码分析

分析代码中ThreadPoolExecutor的使用场景,发现在一个worker公共类中定义了一个线程池,worker执行时会使用线程池进行异步执行。

 public class BackgroundWorker {
 
     private static ThreadPoolExecutor threadPoolExecutor;
 
     static {
         init(15);
     }
 
     public static void init() {
         init(15);
     }
 
     public static void init(int poolSize) {
         threadPoolExecutor =
                 new ThreadPoolExecutor(3, poolSize, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());
     }
 
     public static void shutdown() {
         if (threadPoolExecutor != null && !threadPoolExecutor.isShutdown()) {
             threadPoolExecutor.shutdownNow();
         }
     }
 
     public static void submit(final Runnable task) {
         if (task == null) {
             return;
         }
         threadPoolExecutor.execute(() -> {
             try {
                 task.run();
             } catch (Exception e) {
                 e.printStackTrace();
             }
         });
     }
 
 }

广告缓存刷新worker使用线程池的代码:

 public class AdActivitySyncJob {

    @Scheduled(cron = "0 0/5 * * * ?")
    public void execute() {
        log.info("AdActivitySyncJob start");
        List<DicDTO> locationList = locationService.selectLocation();
        if (CollectionUtils.isEmpty(locationList)) {
            return;
        }

        //中间省略部分无关代码

        BackgroundWorker.init(40);
        locationCodes.forEach(locationCode -> {
            showChannelMap.forEach((key,value)->{
                BackgroundWorker.submit(new Runnable() {
                    @Override
                    public void run() {
                        log.info("AdActivitySyncJob,locationCode:{},showChannel:{}",locationCode,value);
                        Result<AdActivityDTO> result = notLoginAdActivityOuterService.getAdActivityByLocationInner(locationCode, ImmutableMap.of("showChannel", value));
                        LocalCache.AD_ACTIVITY_CACHE.put(locationCode.concat("_").concat(value), result);
                    }
                });
            });
        });
        log.info("AdActivitySyncJob end");
    }

    @PostConstruct
    public void init() {
        execute();
    }
}

原因分析:猜测是worker每次执行,都会执行init方法,创建新的线程池,但是局部创建的线程池并没有被关闭,导致内存中的线程池越来越多,ThreadPoolExecutor在使用完成后,如果不手动关闭,无法被GC回收。

分析验证

验证局部线程池ThreadPoolExecutor创建后,如果不手动关闭,是否会被GC回收:

public class Test {
    private static ThreadPoolExecutor threadPoolExecutor;

    public static void main(String[] args) {
        for (int i=1;i<100;i++){
            //每次均初始化线程池
            threadPoolExecutor =
                    new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());

            //使用线程池执行任务
            for(int j=0;j<10;j++){
                submit(new Runnable() {
                    @Override
                    public void run() {
                    }
                });
            }

        }
        //获取当前所有线程
        ThreadGroup group = Thread.currentThread().getThreadGroup();
        ThreadGroup topGroup = group;
        // 遍历线程组树,获取根线程组
        while (group != null) {
            topGroup = group;
            group = group.getParent();
        }
        int slackSize = topGroup.activeCount() * 2;
        Thread[] slackThreads = new Thread[slackSize];
        // 获取根线程组下的所有线程,返回的actualSize便是最终的线程数
        int actualSize = topGroup.enumerate(slackThreads);
        Thread[] atualThreads = new Thread[actualSize];
        System.arraycopy(slackThreads, 0, atualThreads, 0, actualSize);
        System.out.println("Threads size is " + atualThreads.length);
        for (Thread thread : atualThreads) {
            System.out.println("Thread name : " + thread.getName());
        }
    }

    public static void submit(final Runnable task) {
        if (task == null) {
            return;
        }
        threadPoolExecutor.execute(() -> {
            try {
                task.run();
            } catch (Exception e) {
                e.printStackTrace();
            }
        });
    }
}

输出:

Threads size is 302

Thread name : Reference Handler

Thread name : Finalizer

Thread name : Signal Dispatcher

Thread name : main

Thread name : Monitor Ctrl-Break

Thread name : pool-1-thread-1

Thread name : pool-1-thread-2

Thread name : pool-1-thread-3

Thread name : pool-2-thread-1

Thread name : pool-2-thread-2

Thread name : pool-2-thread-3

Thread name : pool-3-thread-1

Thread name : pool-3-thread-2

Thread name : pool-3-thread-3

Thread name : pool-4-thread-1

Thread name : pool-4-thread-2

Thread name : pool-4-thread-3

Thread name : pool-5-thread-1

Thread name : pool-5-thread-2

Thread name : pool-5-thread-3

Thread name : pool-6-thread-1

Thread name : pool-6-thread-2

Thread name : pool-6-thread-3

…………

执行结果分析,线程数量302个,局部线程池创建的核心线程没有被回收。

修改初始化线程池部分:

//初始化一次线程池
threadPoolExecutor =
        new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());

for (int i=1;i<100;i++){
    //使用线程池执行任务
    for(int j=0;j<10;j++){
        submit(new Runnable() {
            @Override
            public void run() {
            }
        });
    }

}

输出:

Threads size is 8

Thread name : Reference Handler

Thread name : Finalizer

Thread name : Signal Dispatcher

Thread name : main

Thread name : Monitor Ctrl-Break

Thread name : pool-1-thread-1

Thread name : pool-1-thread-2

Thread name : pool-1-thread-3

解决方案

1、只初始化一次,每次执行worker复用线程池

2、每次执行完成后,关闭线程池

BackgroundWorker的定位是后台执行worker均进行线程池的复用,所以采用方案1,每次在static静态代码块中初始化,使用时无需重新初始化。

解决后监控:

jvm内存监控,内存不再持续上升:

线程池恢复正常且平稳:

Jstack文件,观察线程池数量恢复正常:

Dump文件分析线程池对象数量:

拓展

1、 如何关闭线程池

线程池提供了两个关闭方法,shutdownNow 和 shutdown 方法。

shutdownNow方法的解释是:线程池拒接收新提交的任务,同时立马关闭线程池,线程池里的任务不再执行。

shutdown方法的解释是:线程池拒接收新提交的任务,同时等待线程池里的任务执行完毕后关闭线程池。

2、 为什么threadPoolExecutor不会被GC回收

threadPoolExecutor =
         new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());

局部使用后未手动关闭的线程池对象,会被GC回收吗?获取线上jump文件进行分析:

发现线程池对象没有被回收,为什么不会被回收?查看ThreadPoolExecutor.execute()方法:

如果当前线程数小于核心线程数,就会进入addWorker方法创建线程:

分析runWorker方法,如果存在任务则执行,否则调用getTask()获取任务:

发现workQueue.take()会一直阻塞,等待队列中的任务,因为Thread线程一直没有结束, 存在引用关系:ThreadPoolExecutor->Worker->Thread,因为存在GC ROOT的引用,所以无法被回收 。

与慧销平台ThreadPoolExecutor内存泄漏分析相似的内容:

慧销平台ThreadPoolExecutor内存泄漏分析

京东生旅平台慧销系统,作为平台系统对接了多条业务线。但近期根据告警发现内存持续升高,因此猜测该系统可能存在内存泄漏的情况。本文通过此案例,介绍慧销平台ThreadPoolExecutor内存泄漏问题的详细分析过程。

计算机网络 基础面试第二弹

1. TCP三次握手和四次挥手 TCP三次握手的过程如下: 第一步(SYN):客户端向服务器发送一个带有SYN(同步)标志的TCP包,指示客户端希望建立连接。这个包包含一个随机的初始序列号(ISN)。 第二步(SYN-ACK):服务器收到客户端的SYN包后,会发送一个带有SYN和ACK(确认)标志的

【0day漏洞复现】北京慧飒科技有限责任公司WEB VIDEO PLATFORM存在未授权访问漏洞

阅读须知 花果山的技术文章仅供参考,此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失,均由使用者本人负责。本文所提供的工具仅用于学习,禁止用于

巧妙利用“慧言”机器人在安全场景中实践

机器人适用于移动快速办公和通过指令的方式完成操作,京东“慧言”机器人在安全场景中的时间不仅提升了工作效率,还解放了人工劳动力,为企业降本增效赋能。

[转帖]全面普及路漫长!PCIe 7.0标准还在修订 速度高达512GB/s

https://baijiahao.baidu.com/s?id=1737830340315169745&wfr=spider&for=pc 2019年提出PCIe 5.0经过几年后,今年下半年才会开始正式进入消费级市场,而上个月底宣布的PCIe 7.0,其普及之路就更漫长了。 SSD主控芯片大厂慧