千万级数据深分页查询SQL性能优化实践

千万级,数据,分页,查询,sql,性能,优化,实践 · 浏览次数 : 1423

小编点评

**SQL优化建议** **1. 使用索引** * 创建主键索引 * 创建非聚簇索引(secondary index) **2. 优化查询条件** * 使用 WHERE 子句进行条件筛选 * 创建索引覆盖 **3. 建立联合索引** * 将多个字段建立到联合索引 * 使用索引覆盖查询 **4. 减少查询字段** * 只查询必要字段 * 使用索引覆盖 **5. 使用索引** * 创建索引 * 使用索引进行查询 **6. 使用查询优化器** * 可以使用 explain 指示器分析查询执行计划 * 可以设置索引覆盖 **7. 优化查询条件** * 使用 WHERE 子句进行条件筛选 * 创建索引覆盖 **8. 使用索引** * 创建索引 * 使用索引进行查询

正文

一、系统介绍和问题描述

如何在Mysql中实现上亿数据的遍历查询?先来介绍一下系统主角:关注系统,主要是维护京东用户和业务对象之前的关注关系;并对外提供各种关系查询,比如查询用户的关注商品或店铺列表,查询用户是否关注了某个商品或店铺等。但是最近接到了一个新需求,要求提供查询关注对象的粉丝列表接口功能。该功能的难点就是关注对象的粉丝数量过多,不少店铺的粉丝数量都是千万级别,并且有些大V粉丝数量能够达到上亿级别。而这些粉丝列表数据目前全都存储在Mysql库中,然后通过业务对象ID进行分库分表,所有的粉丝列表数据分布在16个分片的256张表中。同时为了方便查询粉丝列表,同一个业务对象的所有粉丝都会路由到同一张表中,每个表的数据量都能够达到 2 亿+。

二、解决问题的思路和方法

数据库表结构示例如下:

CREATE TABLE follow_fans_[0-255]
  (
    id bigint(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',
    biz_content   VARCHAR(50) DEFAULT NULL COMMENT '业务对象ID',
    source        VARCHAR(50) DEFAULT NULL COMMENT '来源',
    pin           VARCHAR(50) DEFAULT NULL COMMENT '用户pin',
    ext           VARCHAR(5000) DEFAULT NULL COMMENT '扩展信息',
    status        TINYINT(2) DEFAULT 1 COMMENT '状态,0是失效,1是正常',
    created_time  DATETIME DEFAULT NULL COMMENT '创建时间',
    modified_time DATETIME DEFAULT NULL COMMENT '修改时间',
    PRIMARY KEY(id),
    UNIQUE INDEX uniq_biz_content_pin (biz_content, pin)
  )
  ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT = '关注粉丝表';


Limit实现

由于同一个业务对象的所有粉丝都保存到一张数据库表中,对于分页查询列表接口,首先想到的就是用limit实现,对于粉丝数量很少的关注对象,查询接口性能还不错。但是随着关注对象的粉丝数量越来越多,接口查询性能就会越来越慢。后来经过接口压测,当业务对象粉丝列表数量达到几十万级别的时候,查询页码数量越大,查询耗时越多。limit深分页为什么会变慢?这就和sql的执行计划有关了,limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10,就会扫描100010行,而limit 0,10,只扫描10行。查询 sql 示例如下:

select  id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} order by id desc limit 10, 10;


  • 方案优点:实现简单,支持跳页查询。
  • 方案缺点:数据量变大时,随着查询页码的深入,查询性能越来越差。

标签记录法

Limit深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉,这样就导致查询性能的下降。所以我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。具体做法方式是,查询粉丝列表中按照自增主键ID倒序查询,查询结果中返回主键ID,然后查询入参中增加maxId参数,该参数需要透传上一次请求粉丝列表中最后一条记录主键ID,第一次查询时可以为空,但是需要查询下一页时就必传。最后根据查询时返回的行数是否等于 10 来判断整个查询是否可以结束。优化后的查询sql参考如下:

select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} order by id desc limit 10;


  • 方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,前 N-1页查询耗时可以控制在几十毫秒内。
  • 方案缺点:只能支持按照页码顺序查询,不支持跳页,而且仅能保证前 N-1 页的查询性能;如果最后一页的表中行数量不满 10 条时,引擎不知道何时终止查询,只能遍历全表,所以当表中数据量很大时,还是会出现超时情况。

区间限制法

标签记录法最后一页查询超时就是因为不知道何时终止查询,所以我们可以提供一个区间限制范围来告诉引擎查询到此结束。

查询sql再次优化后参考如下:

select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} and id >={minId} order by id desc limit 10;


由于查询时需要带上 minId 参数,所以在执行查询粉丝列表之前,我们就需要先把 minId 查询出来,查询 sql 参考如下:

select min(id) from follow_fans_1 where biz_content = #{bizContent}


由于表中数据量太大,每个表中总数据量都是上亿级别,导致第一步查询 minId就直接超时了,根本没有机会去执行第二步。但是考虑到上一个查询方案只有最后一页才会查询超时,前N-1页查询根本用不到 minId 作为区间限制。所以当表中数据量很大时,通常从第一页到最后一页查询之间会存在一定的时间差。我们就可以正好去利用这个时间差去异步查询minId,然后将查询出来的minId存储到缓存中,考虑到这个 minId 可能会被删除,可以设置一定的过期时间。最后优化后的查询流程如下:

  1. 调用查询粉丝列表方法时首先查询缓存minId;
  2. 如果缓存minId 为空,则创建异步任务去执行select min(id) 查询表中的 minId,然后回写缓存,该异步任务执行时间可能会很长,可以单独设置超时时间。
  3. 如果缓存minId不为空,则在查询sql中拼接查询条件id >={minId},从而保证查询最后一页时不会超时。

但是在上述方案中,如果表中的数据量达到上亿级别时,第二步的异步获取minId任务还是会存在超时的风险,从而导致查询最后一页粉丝列表出现超时。所以我们又引入了离线数据计算任务,通过在大数据平台离线计算获取每个biz_content下的minId,然后将计算结果minId推送到缓存中。为了保证minId能够及时更新,我们可以自由设置该离线任务的执行周期,比如每周执行一次。通过大数据平台的离线计算minId,从而大大减少了在查询粉丝列表时执行 select min(id)的业务数据库压力。只有当缓存没有命中的时候才去执行 select min(id),通常这些缓存没有命中的 minId 也都是一些被离线任务遗漏的少量数据,不会影响接口的整体查询性能。

  • 方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,从第一页到最后一页都控制在几十毫秒内。
  • 方案缺点:只能支持按照页码顺序和主键ID倒序查询,不支持跳页查询,并且还需要依赖大数据平台离线计算和额外的缓存来存储 minId。

三、对SQL优化治理的思考

通过对以上三种方案的探索实践,发现每一种方案都有自己的优缺点和它的适用场景,我们不能脱离实际业务场景去谈方案的好坏。所以我们要结合实际的业务环境以及表中数据量的大小去综合考虑、权衡利弊,然后找到更适合的技术方案。以下是总结的几条SQL优化建议:

查询条件一定要有索引

索引主要分为两大类,聚簇索引和非聚簇索引,可以通过 explain 查看 sql 执行计划判断查询是否使用了索引。

聚簇索引 (clustered index):聚簇索引的叶子节点存储行记录,InnoDB必须要有且只有一个聚簇索引:

  1. 如果表定义了主键,则主键索引就是聚簇索引;
  2. 如果没有定义主键,则第一个非空的唯一索引列是聚簇索引;
  3. 如果没有唯一索引,则创建一个隐藏的row-id列作为聚簇索引。主键索引查询非常快,可以直接定位行记录。

非聚簇索引 (secondary index):InnoDB非聚簇索引的叶子节点存储的是行记录的主键值,而MyISAM叶子节点存储的是行指针。 通常情况下,需要先遍历非聚簇索引获得聚簇索引的主键ID,然后在遍历聚簇索引获取对应行记录。

正确使用索引,防止索引失效

可以参考以下几点索引原则:

  1. 最左前缀匹配原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如 a=1 and b=2 and c>3 and d=4 ,如果建立了(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a、b、d的顺序可以任意调整。
  2. =和in可以乱序,比如 a=1 and b=2 and c=3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮助优化成索引可以识别的形式。
  3. 尽量选择区分度高德列作为索引,区分度公式count(distinct col)/count(*),表示字段不重复的比例。
  4. 索引列不能使用函数或参与计算,不能进行类型转换,否则索引会失效。
  5. 尽量扩展索引,不要新建索引。

减少查询字段,避免回表查询

回表查询就是先定位主键值,在根据主键值定位行记录,需要扫描两遍索引。 解决方案:只需要在一颗索引树上能够获取SQL所需要的所有列数据,则无需回表查询,速度更快。可以将要查询的字段,建立到联合索引里去,这就是索引覆盖。查询sql在进行explain解析时,Extra字段为Using Index时,则触发索引覆盖。没有触发索引覆盖,发生了回表查询时,Extra字段为Using Index condition。

作者:京东零售 曹志飞

来源:京东云开发者社区 转载请注明来源

与千万级数据深分页查询SQL性能优化实践相似的内容:

千万级数据深分页查询SQL性能优化实践

最近接到了一个新需求,要求提供查询关注对象的粉丝列表接口功能。该功能的难点就是关注对象的粉丝数量过多,不少店铺的粉丝数量都是千万级别,并且有些大V粉丝数量能够达到上亿级别

前端说你的API接口太慢了,怎么办?

当有千万条海量数据时,前端调取接口发现接口响应的太慢,前端这时让你优化一下接口,你说有几千万条数据,觉得自己尽力了,前端觉得你好菜,别急,读完这篇文章,让前端喊你一声:大佬,厉害!!! 常用的方法总结 通过合理的分页加载、索引优化、数据缓存、异步处理、压缩数据等手段,可以有效地优化接口性能,提升系统

.NET周刊【8月第1期 2023-08-06】

## 国内文章 ### NativeBuferring,一种零分配的数据类型(上篇) https://www.cnblogs.com/artech/p/17586781.html 之前一个项目涉及到针对海量(千万级)实时变化数据的计算,由于对性能要求非常高,我们不得不将参与计算的数据存放到内存中,并

稳定支撑千万级月活,华为日历背后的英雄

摘要:华为日历月活高达数千万,这使其对支撑业务的数据库提出了巨大挑战:高并发场景下,数据库如何实现快速扩容?海量数据运行,如何确保业务稳定性? 本文分享自华为云社区《稳定支撑千万级月活,华为日历背后的英雄》,作者: GaussDB 数据库。 随着科技进步,手机日历早已融入我们的生活,不仅可以记录时间

[转帖]mysql 千万数据迁移的几种方式

最近因为业务需求,我们需要将我们的订单表(一千三百万数据,并且每天已五万条速度增加)已订单类型分组迁移到新的业务表中,以降低我们订单表的大小,同时暂时杜绝订单表所带来的数据瓶颈问题,需求下来了,基本思路也要确定下来,我打算先将三天前的历史数据先跑到表里,待整个业务线迁移过后,我再将剩下的数据跑进去,

mysql 大表如何ddl 👑

大家好,我是蓝胖子,mysql对大表(千万级数据)的ddl语句,在生产上执行时一定要千万小心,一不小心就有可能造成业务阻塞,数据库io和cpu飙高的情况。今天我们就来看看如何针对大表执行ddl语句。 通过这篇文章,你能了解到下面的知识点, ![Pasted image 20230831165346.

[转帖]mysql百万级性能瓶颈-数据库选型

项目中使用了mysql数据库,但数据量增长太快,不久到了百万级,很快又到表到了千万级,尝试了各种优化方式,最终效果仍难达到秒级响应,那么引发了我关于数据库选型到一些思考。 1、mysql的单表性能瓶颈究竟是多少? 曾经在中国互联网技术圈广为流传着这么一个说法:MySQL 单表数据量大于 2000 万

[转帖]mysql百万级性能瓶颈-数据库选型

项目中使用了mysql数据库,但数据量增长太快,不久到了百万级,很快又到表到了千万级,尝试了各种优化方式,最终效果仍难达到秒级响应,那么引发了我关于数据库选型到一些思考。 1、mysql的单表性能瓶颈究竟是多少? 曾经在中国互联网技术圈广为流传着这么一个说法:MySQL 单表数据量大于 2000 万

一个混乱千万级软件项目

背景:公司接到一个亿级的项目,软件大概占到1/4的比例,整个项目包含了硬件和软件团队。软件团队是要实是一个软件产品,让其控制各种硬件设备做自动化运作,并打通上下游系统的数据。软件同时统计分析(包括机器学习和AI) 整个项目设备的运作和任务执行情况,服务于后续运营优化。 项目成员结构:大项目经理,对这

[转帖]高性能 -Nginx 多进程高并发、低时延、高可靠机制在百万级缓存 (redis、memcache) 代理中间件中的应用

https://xie.infoq.cn/article/2ee961483c66a146709e7e861 关于作者 前滴滴出行技术专家,现任 OPPO 文档数据库 mongodb 负责人,负责 oppo 千万级峰值 TPS/十万亿级数据量文档数据库 mongodb 内核研发及运维工作,一直专注于