K8s部署轻量级日志收集系统EFK(elasticsearch + filebeat + kibana)

k8s,部署,轻量级,日志,收集,系统,efk,elasticsearch,filebeat,kibana · 浏览次数 : 45

小编点评

# 创建文件beat.settings.configmap.yml 的内容 ```yaml defaultMode: 0600 name: filebeat-config ``` # 创建文件beat.indice-lifecycle.configmap.yml 的内容 ```yaml defaultMode: 0600 name: filebeat-indice-lifecycle ``` # 创建 data 的内容 ```yaml path: /usr/share/filebeat-data type: DirectoryOrCreate ``` # 创建 config 的内容 ```yaml name: config defaultMode: 0600 ``` # 创建 filebeat-indice-lifecycle 的内容 ```yaml name: filebeat-indice-lifecycle defaultMode: 0600 ``` # 创建 data 的内容 ```yaml path: /var/log type: DirectoryOrCreate ``` # 创建 docker 的内容 ```yaml volumes: - name: config defaultMode: 0600 path: /etc/filebeat.yml - name: filebeat-indice-lifecycle defaultMode: 0600 path: /etc/indice-lifecycle.json - name: data path: /usr/share/filebeat-data ``` # 创建 index 的内容 ```yaml name: data defaultMode: 0600 ```

正文

K8s部署EFK(elasticsear + filebeat + kibana)日志收集

一.准备镜像

# 在本机拉取镜像
docker pull docker.elastic.co/elasticsearch/elasticsearch:7.17.2
docker pull docker.elastic.co/kibana/kibana:7.17.2
docker pull docker.elastic.co/beats/filebeat:7.17.2

# 对镜像重打标签 将${harbor_url}和${harbor_project}换成自己的harbor私服地址和目录
docker tag docker.elastic.co/elasticsearch/elasticsearch:7.17.2 ${harbor_url}/${harbor_project}/elasticsearch:7.17.2
docker tag docker.elastic.co/kibana/kibana:7.17.2 ${harbor_url}/${harbor_project}/kibana:7.17.2
docker tag docker.elastic.co/beats/filebeat:7.17.2 ${harbor_url}/${harbor_project}/filebeat:7.17.2

# 登陆自己的harbor服务器
docker login -u admin -p ${password} ${harbor_url}

# 上传至harbor仓库
docker push ${harbor_url}/${harbor_project}/elasticsearch:7.17.2
docker push ${harbor_url}/${harbor_project}/kibana:7.17.2
docker push ${harbor_url}/${harbor_project}/filebeat:7.17.2

此处的目的是避免某些服务器从docker外网仓库拉取不了镜像,从而导致pod一直运行不了,当然也可以不用这一步,可以直接使用官方的镜像地址

如果此处的Harbor目录是私有的,则需要在k8s集群中创建docker拉取harbor私库的密钥

# -n 后是指定的空间,根据自己的情况去更改,不加-n,默认是default空间,因为本次EFK安装在kube-system命名空间下,所以-n为kube-system。
kubectl create secret docker-registry harbor-pull-secret --docker-server=${harbor_url} --docker-username=admin --docker-password=${password} -n kube-system

kube-system为集群默认存在的空间,不用手动创建

#检查密钥是否创建成功
kubectl get secrets -n kube-system

image-20231011094101732

二.搭建Elasticsearch + kibana

1.在可执行kubectl命令的服务器准备安装的yml文件

image-20231011095203812

2.在elasticsearch-kibana目录下创建配置文件elasticsearch.yml
cluster.name: my-es
node.name: "node-1"
path.data: /usr/share/elasticsearch/data
#path.logs: /var/log/elasticsearch
bootstrap.memory_lock: false
network.host: 0.0.0.0
http.port: 9200
discovery.seed_hosts: ["127.0.0.1", "[::1]"]
cluster.initial_master_nodes: ["node-1"]
#增加参数,使head插件可以访问es
http.cors.enabled: true
http.cors.allow-origin: "*"
http.cors.allow-headers: Authorization,X-Requested-With,Content-Length,Content-Type
xpack.monitoring.collection.enabled: true
3.创建kibana配置文件kibana.yml
server.port: 5601
server.host: "0.0.0.0"
elasticsearch.hosts: "http://es-kibana-0.es-kibana.kube-system:9200"
kibana.index: ".kibana"
i18n.locale: "zh-CN"
monitoring.ui.elasticsearch.hosts: ["http://es-kibana-0.es-kibana.kube-system:9200"]
monitoring.ui.enabled: true

其中elasticsearch.hosts的地址构成为pod名:es-kibana-0,service名:es-kibana,命名空间:kube-system,以及service中配置的端口号9200

4.在k8s中创建elasticsearch和kibana的配置文件configmap
#在编写yml配置文件的目录执行该命令
kubectl create configmap es-config -n kube-system --from-file=elasticsearch.yml
kubectl create configmap kibana-config -n kube-system --from-file=kibana.yml
5.检查是否有StorageClass
kubectl get sc
#如下图所示是有StorageClass的

image-20231011113436713

如果有则跳过第三步,没有则需要按照第三步配置NFS服务器

创建es存储pvc,pv配置文件:es-pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: es-pv-claim
  namespace: kube-system
  labels:
    app: es
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: "nfs-storage"
  resources:
    requests:
      storage: 20Gi
kubectl apply -f es-pvc.yaml
6.创建es-kibana的yaml配置文件: es-statefulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
  labels:
    app: es-kibana
  name: es-kibana
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: es-kibana
  serviceName: "es-kibana"
  template:
    metadata:
      labels:
        app: es-kibana
    spec:
      containers:
      - image: [Harbor私库地址]/elasticsearch:7.17.2
        imagePullPolicy: IfNotPresent
        name: elasticsearch
        resources:
          requests:
            memory: "800Mi"
            cpu: "800m"
          limits:
            memory: "1Gi"
            cpu: "1000m"
        volumeMounts:
        - name: es-config
          mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
          subPath: elasticsearch.yml
        - name: es-persistent-storage
          mountPath: /usr/share/elasticsearch/data
        env:
        - name: TZ
          value: Asia/Shanghai
      - image: [Harbor私库地址]/kibana:7.17.2
        imagePullPolicy: IfNotPresent
        name: kibana
        env:
        - name: TZ
          value: Asia/Shanghai
        volumeMounts:
        - name: kibana-config
          mountPath: /usr/share/kibana/config/kibana.yml
          subPath: kibana.yml
      volumes:
      - name: es-config
        configMap:
          name: es-config
      - name: kibana-config
        configMap:
          name: kibana-config
      - name: es-persistent-storage
        persistentVolumeClaim:
          claimName: es-pv-claim
      #hostNetwork: true
      #dnsPolicy: ClusterFirstWithHostNet
      nodeSelector:
       kubernetes.io/hostname: k8s-uni-node3
#创建pod
kubectl create -f es-statefulset.yaml

# 查看
kubectl get pod -o wide -n kube-system|grep es

# 使用curl命令测试elasticsearch是否正常
kubectl get pod -o wide -n kube-system|grep es

image-20231011120051319

然后在集群内部服务器上测试是否能通信

image-20231011135418126

当然也可以在Rancher上查看pod是否运行成功

image-20231011135532459

这个pod一次运行了两个容器,分别是kibanah和elasticsearch,并且把elasticsearch容器中的/usr/share/elasticsearch/data目录下的内容,挂载到了es-pv-claim下,我们可以在第三步中的NFS服务器共享目录中找到挂载的数据。

image-20231011115625957

7.创建es-kibana cluserip的svc
vi es-cluster-none-svc.yaml
apiVersion: v1
kind: Service
metadata:
  labels:
    app: es-kibana
  name: es-kibana
  namespace: kube-system
spec:
  ports:
  - name: es9200
    port: 9200
    protocol: TCP
    targetPort: 9200
  - name: es9300
    port: 9300
    protocol: TCP
    targetPort: 9300
  clusterIP: None
  selector:
    app: es-kibana
  type: ClusterIP
kubectl apply -f es-cluster-none-svc.yaml

这个配置文件描述了一个名为 es-kibana 的 Kubernetes Service,该 Service 不分配 Cluster IP(ClusterIP: None),它会将流量路由到具有特定标签 app: es-kibana 的 Pod,这些 Pod 的端口 9200 和 9300 将被公开,并且可以通过相应的 targetPort 进行访问。用于集群内部访问

8.创建es-kibana的nodeport类型的svc
vi es-nodeport-svc.yaml
apiVersion: v1
kind: Service
metadata:
  labels:
    app: es-kibana
  name: es-kibana-nodeport-svc
  namespace: kube-system
spec:
  ports:
  - name: 9200-9200
    port: 9200
    protocol: TCP
    targetPort: 9200
    #nodePort: 9200
  - name: 5601-5601
    port: 5601
    protocol: TCP
    targetPort: 5601
    #nodePort: 5601
  selector:
    app: es-kibana
  type: NodePort
kubectl apply -f es-nodeport-svc.yaml

这个配置文件创建了一个名为 "es-kibana-nodeport-svc" 的 Kubernetes Service。该 Service 使用 NodePort 类型,允许从集群外部访问服务。Service 公开了两个端口,9200 和 5601,分别将流量路由到具有相应标签的 Pod 的对应端口。Pod 的选择基于标签 app: es-kibana。用于暴露端口,从集群外部访问es和kibana

外网暴露的端口是k8s随机分配的,有两种办法可以查看

#在服务器使用命令查看
kubectl get svc -n kube-system|grep es-kibana

image-20231011141800714

Rancher上查看

image-20231011141916201

可以看到Kibana的端口为31200,然后就能使用nodeip+port访问

image-20231011142531139

检查es是否注册上Kibana,点击侧边栏找到堆栈检测,然后点Nodes

image-20231011142819072

image-20231011142914922

至此,Elasticsearch + kibana已经搭建完成,可以进行第四步。


三.配置NFS服务器

1).安装NFS服务

Ubuntu:

sudo apt update
sudo apt install nfs-kernel-server

Centos:

yum update
yum -y install nfs-utils
# 创建或使用用已有的文件夹作为nfs文件存储点
mkdir -p /home/data/nfs/share
vi /etc/exports

写入如下内容

/home/data/nfs/share *(rw,no_root_squash,sync,no_subtree_check)

image-20230913174358481

# 配置生效并查看是否生效
exportfs -r
exportfs

image-20230913174639129

# 启动rpcbind、nfs服务
#Centos
systemctl restart rpcbind && systemctl enable rpcbind
systemctl restart nfs && systemctl enable nfs
#Ubuntu
systemctl restart rpcbind && systemctl enable rpcbind
systemctl start nfs-kernel-server && systemctl enable nfs-kernel-server

# 查看 RPC 服务的注册状况
rpcinfo -p localhost

image-20230913175507036

# showmount测试
showmount -e localhost

image-20230913175649184

以上都没有问题则说明安装成功

2).k8s注册nfs服务

新建storageclass-nfs.yaml文件,粘贴如下内容:

## 创建了一个存储类
apiVersion: storage.k8s.io/v1
kind: StorageClass                  #存储类的资源名称
metadata:
  name: nfs-storage                 #存储类的名称,自定义
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"          #注解,是否是默认的存储,注意:KubeSphere默认就需要个默认存储,因此这里注解要设置为“默认”的存储系统,表示为"true",代表默认。
provisioner: k8s-sigs.io/nfs-subdir-external-provisioner         #存储分配器的名字,自定义
parameters:
  archiveOnDelete: "true"  ## 删除pv的时候,pv的内容是否要备份

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nfs-client-provisioner
  labels:
    app: nfs-client-provisioner
  # replace with namespace where provisioner is deployed
  namespace: default
spec:
  replicas: 1                 #只运行一个副本应用
  strategy:                   #描述了如何用新的POD替换现有的POD
    type: Recreate            #Recreate表示重新创建Pod
  selector:        #选择后端Pod
    matchLabels:
      app: nfs-client-provisioner
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner          #创建账户
      containers:
        - name: nfs-client-provisioner         
          image: registry.cn-hangzhou.aliyuncs.com/lfy_k8s_images/nfs-subdir-external-provisioner:v4.0.2      #使用NFS存储分配器的镜像
          volumeMounts:
            - name: nfs-client-root           #定义个存储卷,
              mountPath: /persistentvolumes   #表示挂载容器内部的路径
          env:
            - name: PROVISIONER_NAME          #定义存储分配器的名称
              value: k8s-sigs.io/nfs-subdir-external-provisioner         #需要和上面定义的保持名称一致
            - name: NFS_SERVER                                       #指定NFS服务器的地址,你需要改成你的NFS服务器的IP地址
              value: 192.168.0.0 ## 指定自己nfs服务器地址
            - name: NFS_PATH                                
              value: /home/data/nfs/share  ## nfs服务器共享的目录            #指定NFS服务器共享的目录
      volumes:
        - name: nfs-client-root           #存储卷的名称,和前面定义的保持一致
          nfs:
            server: 192.168.0.0            #NFS服务器的地址,和上面保持一致,这里需要改为你的IP地址
            path: /home/data/nfs/share               #NFS共享的存储目录,和上面保持一致
--- 
apiVersion: v1
kind: ServiceAccount                 #创建个SA账号
metadata:
  name: nfs-client-provisioner        #和上面的SA账号保持一致
  # replace with namespace where provisioner is deployed
  namespace: default
---
#以下就是ClusterRole,ClusterRoleBinding,Role,RoleBinding都是权限绑定配置,不在解释。直接复制即可。
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: nfs-client-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["nodes"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["create", "update", "patch"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    # replace with namespace where provisioner is deployed
    namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-runner
  apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
  # replace with namespace where provisioner is deployed
  namespace: default
rules:
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
  # replace with namespace where provisioner is deployed
  namespace: default
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    # replace with namespace where provisioner is deployed
    namespace: default
roleRef:
  kind: Role
  name: leader-locking-nfs-client-provisioner
  apiGroup: rbac.authorization.k8s.io

需要修改的就只有服务器地址和共享的目录

创建StorageClass

kubectl apply -f storageclass-nfs.yaml

# 查看是否存在
kubectl get sc

image-20231011113436713


四.创建filebeat服务

1.创建filebeat主配置文件filebeat.settings.configmap.yml
vi filebeat.settings.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: kube-system
  name: filebeat-config
  labels:
    app: filebeat
data:
  filebeat.yml: |-
    filebeat.inputs:
    - type: container
      enabled: true
      paths:
      - /var/log/containers/*.log
      multiline:
        pattern: ^\d{4}-\d{1,2}-\d{1,2}\s\d{1,2}:\d{1,2}:\d{1,2}
        negate: true
        match: after
      processors:
      - add_kubernetes_metadata:
          in_cluster: true
          host: ${NODE_NAME}
          matchers:
          - logs_path:
              logs_path: "/var/log/containers/"

      - add_cloud_metadata:
      - add_kubernetes_metadata:
          matchers:
          - logs_path:
              logs_path: "/var/log/containers/"
      - add_docker_metadata:
    output.elasticsearch:
      hosts: ["http://[节点IP]:32494"]
      indices:
        - index: "filebeat-demo-%{+yyyy.MM.dd}"

    setup.ilm:
      policy_file: /etc/indice-lifecycle.json
#执行
kubectl apply  -f filebeat.settings.configmap.yml

filebeat.inputs: 定义输入配置,这里配置了从容器日志中收集数据。

  • type: 定义输入类型为 container,表示从容器日志中收集数据。

  • enabled: 启用该输入配置。

  • paths: 指定要监视的日志文件路径,这里是容器日志路径。k8s容器的日志默认是保存在在服务器的/var/log/containers/下的。

  • multiline: 多行日志配置,用于将多行日志合并为单个事件。正则表示如果前面几个数字不是4个数字开头,那么就会合并到一行,解决Java堆栈错误日志收集问题

  • processors: 定义处理器,用于添加元数据。add_kubernetes_metadata:为日志事件添加 Kubernetes 相关的元数据信息,例如 Pod 名称、命名空间、标签等。

output.elasticsearch: 定义输出配置,将收集到的日志发送到 Elasticsearch。

  • hosts: 指定 Elasticsearch 节点的地址和端口。端口号为第二步安装es时,nodeport暴露的端口号。
  • indices: 定义索引模式,这里以日期为后缀,创建每日索引。

setup.ilm: 配置索引生命周期管理 (ILM),用于管理索引的生命周期。

  • policy_file:后面定义的是生命周期配置文件的地址
2.创建Filebeat索引生命周期策略配置文件

为了防止大量的数据存储,可以利用 indice 的生命周期来配置数据保留。 如下所示的文件中,配置成每天或每次超过5GB的时候就对 indice 进行轮转,并删除所有超过30天的 indice 文件。

vi filebeat.indice-lifecycle.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: kube-system
  name: filebeat-indice-lifecycle
  labels:
    app: filebeat
data:
  indice-lifecycle.json: |-
    {
      "policy": {
        "phases": {
          "hot": {
            "actions": {
              "rollover": {
                "max_size": "5GB" ,
                "max_age": "1d"
              }
            }
          },
          "delete": {
            "min_age": "30d",
            "actions": {
              "delete": {}
            }
          }
        }
      }
    }
#执行
kubectl apply  -f filebeat.indice-lifecycle.configmap.yml
3.Filebeat操作权限
vi filebeat.permission.yml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: filebeat
rules:
- apiGroups: [""]
  resources:
  - namespaces
  - pods
  - nodes
  verbs:
  - get
  - watch
  - list
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: filebeat
subjects:
- kind: ServiceAccount
  name: filebeat
  namespace: kube-system
roleRef:
  kind: ClusterRole
  name: filebeat
  apiGroup: rbac.authorization.k8s.io
---
apiVersion: v1
kind: ServiceAccount
metadata:
  namespace: kube-system
  name: filebeat
#执行
kubectl apply  -f filebeat.permission.yml
  1. ClusterRole:
    • 作用:定义了一个 ClusterRole,它是一种权限集合,指定了 Filebeat 在集群范围内可以执行的操作,如获取(get)、监视(watch)、列出(list)等。
    • 权限:
      • 可以对命名空间执行 get、watch、list 操作。
      • 可以对 Pod 执行 get、watch、list 操作。
      • 可以对节点执行 get、watch、list 操作。
  2. ClusterRoleBinding:
    • 作用:定义了一个 ClusterRoleBinding,将 ClusterRole (filebeat) 绑定到特定的 ServiceAccount (filebeat)。
    • 意义:将 ClusterRole 与 ServiceAccount 绑定,以使 Filebeat 具有在 Kubernetes 中执行相应操作的权限。
  3. ServiceAccount:
    • 作用:定义了一个 ServiceAccount (filebeat),它是 Kubernetes 中用于身份验证和授权的实体。
    • 意义:创建了一个用于 Filebeat 的身份实体,使得 Filebeat 在 Kubernetes 中能够以其身份运行。
4.Filebeat Daemonset配置文件
vi filebeat.daemonset.yml
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  namespace: kube-system
  name: filebeat
  labels:
    app: filebeat
spec:
  selector:
    matchLabels:
      app: filebeat
  template:
    metadata:
      labels:
        app: filebeat
    spec:
      serviceAccountName: filebeat
      terminationGracePeriodSeconds: 30
      containers:
      - name: filebeat
        image: [Harbor私服地址]/filebeat:7.17.2
        args: [
          "-c", "/etc/filebeat.yml",
          "-e",
        ]
        env:
        - name: NODE_NAME
          valueFrom:
            fieldRef:
              fieldPath: spec.nodeName
        securityContext:
          runAsUser: 0
        resources:
          limits:
            memory: 200Mi
          requests:
            cpu: 100m
            memory: 100Mi
        volumeMounts:
        - name: config
          mountPath: /etc/filebeat.yml
          readOnly: true
          subPath: filebeat.yml
        - name: filebeat-indice-lifecycle
          mountPath: /etc/indice-lifecycle.json
          readOnly: true
          subPath: indice-lifecycle.json
        - name: data
          mountPath: /usr/share/filebeat/data
        - name: varlog
          mountPath: /var/log
          readOnly: true
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
        - name: dockersock
          mountPath: /var/run/docker.sock
      volumes:
      - name: config
        configMap:
          defaultMode: 0600
          name: filebeat-config
      - name: filebeat-indice-lifecycle
        configMap:
          defaultMode: 0600
          name: filebeat-indice-lifecycle
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
      - name: dockersock
        hostPath:
          path: /var/run/docker.sock
      - name: data
        hostPath:
          path: /var/lib/filebeat-data
          type: DirectoryOrCreate
#执行
kubectl apply  -f filebeat.daemonset.yml

volumeMounts配置示意:

  1. name: config:
    • 作用: 创建一个挂载点,将 ConfigMap 中的 filebeat.yml 配置文件挂载到容器中的 /etc/filebeat.yml 路径。
    • readOnly: 设置为 true,表示只读访问该配置文件。
  2. name: filebeat-indice-lifecycle:
    • 作用: 创建一个挂载点,将 ConfigMap 中的 indice-lifecycle.json 文件挂载到容器中的 /etc/indice-lifecycle.json 路径。
    • readOnly: 设置为 true,表示只读访问该文件。
  3. name: data:
    • 作用: 创建一个挂载点,将宿主机的 /var/lib/filebeat-data 目录挂载到容器中的 /usr/share/filebeat/data 路径。
    • type: DirectoryOrCreate: 指定挂载类型为目录,如果该目录不存在则创建。
  4. name: varlog:
    • 作用: 创建一个挂载点,将宿主机的 /var/log 目录挂载到容器中的 /var/log 路径。
    • readOnly: 设置为 true,表示只读访问该目录。
  5. name: varlibdockercontainers:
    • 作用: 创建一个挂载点,将宿主机的 /var/lib/docker/containers 目录挂载到容器中的 /var/lib/docker/containers 路径。
    • readOnly: 设置为 true,表示只读访问该目录。
  6. name: dockersock:
    • 作用: 创建一个挂载点,将宿主机的 Docker socket 文件 /var/run/docker.sock 挂载到容器中的 /var/run/docker.sock 路径。

volumes配置示意:

  1. name: config:
    • 作用: 与volumeMounts中的name: config相对应。
    • defaultMode: 0600: 表示只有文件所有者可读写,其他用户无权限。
    • name:filebeat-config对应第一步创建的filebeat.settings.configmap.yml中的Configmap的名字
  2. name: filebeat-indice-lifecycle:
    • 作用: 与volumeMounts中的filebeat-indice-lifecycle相对应。
    • defaultMode: 0600: 表示只有文件所有者可读写,其他用户无权限。
    • name:filebeat-indice-lifecycle对应第二步创建的filebeat.indice-lifecycle.configmap.yml中的Configmap的名字
  3. name: data
    • 作用:与volumeMounts中的name: data相对应。
    • path:需要挂载的目录路径
    • type:DirectoryOrCreatea表示容器启动时会检查宿主机是否存在该目录,不存在则创建。因为Filebeat在每个节点的宿主机上都会运行,所以直接挂载到宿主机目录

检查是否执行成功

kubectl get pod -o wide -n kube-system|grep filebeat
#如下图,全为Running则表示运行成功

image-20231011160048266

也可以在Rancher上查看

image-20231011160211682

五.检查File beat与es,Kibana是否配置成功

1.首先在侧边栏找到Stack Management

image-20231011160552133

2.选择索引管理,查看是否有以filebeat-demo加时间戳为名的索引

image-20231011160630025

image-20231011160754049

3.创建索引模式

image-20231011160851049

image-20231011160950466

4.查看日志

点击侧边栏,选择discover,就能看到Filebeat收集到的容器日志,可以按照自己的需求进行日志筛选

image-20231011161136329

与K8s部署轻量级日志收集系统EFK(elasticsearch + filebeat + kibana)相似的内容:

K8s部署轻量级日志收集系统EFK(elasticsearch + filebeat + kibana)

目录K8s部署EFK(elasticsearch + filebeat + kibana)日志收集一.准备镜像二.搭建Elasticsearch + kibana1.在可执行kubectl命令的服务器准备安装的yml文件2.在elasticsearch-kibana目录下创建配置文件elastics

DHorse v1.5.1 发布,基于 k8s 的发布平台

版本说明 新增特性 支持k8s的v1.30.x版本; 优化特性 优化回滚功能; 修复注册来源的回滚问题; 新增和修改应用时校验应用名; 升级kubernetes-client至v6.13.0; 调整部署明细表头展示; 升级指南 升级指南 DHorse介绍 DHorse是一个轻量级、简单易用的云应用管

K8S部署ECK采集日志

1. 部署nfs 1. 安装nfs #所有节点安装 yum install -y nfs-utils 在master节点创建nfs共享目录 mkdir -pv /data/kubernetes 编写配置文件 cat > /etc/exports <<'EOF' /data/kubernetes *(

[转帖]K8S部署Redis Cluster集群(三主三从模式) - 部署笔记

https://www.cnblogs.com/cheyunhua/p/15619317.html 一、Redis 介绍 Redis代表REmote DIctionary Server是一种开源的内存中数据存储,通常用作数据库,缓存或消息代理。它可以存储和操作高级数据类型,例如列表,地图,集合和排序

[转帖]k8s部署有状态应用redis-cluster集群踩坑总结

https://segmentfault.com/a/1190000039196137 redis-cluster集群的部署网上一堆,用k8s部署也不在少数,但都是抄来抄去,问题不少,实际操作分享出来的还是太少。 1、redis启动配置文件,使用CofigMap来管理比较方便,redis-confi

[转帖]k8s部署-22-yaml文件怎么写,规则是什么,在k8s中分别有什么含义

https://www.jianshu.com/p/ba5e3d9ecc1e 在前面的文章中,我们使用了较多的yaml文件,例如测试kubespary方式搭建的集群可用性,亦或者前文中我们搭建ingress-nginx的时候也是用了yaml文件,那么k8s中的yaml文件到底该如何来写,针对k8s中

K8S部署应用详解

# 前言 首先以SpringBoot应用为例介绍一下k8s的发布步骤。 1.从代码仓库下载代码,比如GitLab; 2.接着是进行打包,比如使用Maven; 3.编写Dockerfile文件,把步骤2产生的包制作成镜像; 4.上传步骤3的镜像到远程仓库,比如Harhor; 5.编写Deploymen

k8s部署springboot

# 综述 首先介绍发布步骤。 1.从代码仓库下载代码,比如GitLab; 2.接着是进行打包,比如使用Maven; 3.编写Dockerfile文件,把步骤2产生的包制作成镜像; 4.上传步骤3的镜像到远程仓库,比如Harhor; 5.编写Deployment文件; 6.提交Deployment文件

K8s高可用集群二进制部署-V1.20

一、前置知识点 1.1 生产环境部署K8s集群的两种方式 kubeadm Kubeadm是一个K8s部署工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群。 二进制包 从github下载发行版的二进制包,手动部署每个组件,组成Kubernetes集群。

使用 K8S 部署 RSS 全套自托管解决方案- RssHub + Tiny Tiny Rss

前言 什么是 RSS? RSS 是一种描述和同步网站内容的格式,是使用最广泛的 XML 应用。RSS 搭建了信息迅速传播的一个技术平台,使得每个人都成为潜在的信息提供者。发布一个 RSS 文件后,这个 RSS Feed 中包含的信息就能直接被其他站点调用,而且由于这些数据都是标准的 XML 格式,所