【matplotlib 实战】--柱状图

matplotlib,实战,柱状图 · 浏览次数 : 10

小编点评

**分析王者荣耀2023年KPL春季赛战队数据使用柱状图** **主要元素柱状图** * 横轴(x轴):战队 * 纵轴(y轴):比赛场次 * 柱子:胜场数 **适用的场景** * 比较不同战队或时间段的数量或百分比 * 显示数据的分布情况 * 比较不同组之间的差异 **不适用的场景** * 数据之间存在比例关系 * 数据之间存在时间序列关系 * 数据之间存在空间关系 * 数据之间存在相关性关系 **代码分析** ```python import matplotlib.pyplot as plt # 加载数据 df = pd.read_csv("d:/share/league-2023春季赛.csv") # 分析结果 data = df.loc[:5, [ "排名", "战队", "比赛场次", "胜场", ]] # 创建柱状图 fig, ax = plt.subplots() teams = data["战队"].tolist() games = {"比赛场次": data["比赛场次"].tolist(), "胜场": data["胜场"].tolist()} width = 0.25 multiplier = 0 x = np.arange(len(teams)) for name, vals in games.items(): offset = width * multiplier rects = ax.bar(x + offset, vals, width, label=name) ax.bar_label(rects, padding=3) multiplier += 1 ax.set_title("2023-KPL春季赛前六名") ax.set_xticks(x + 0.1, teams) ax.legend(loc="upper left") # 显示图表 plt.show() ``` **结论** 重庆狼队在2023年KPL春季赛中获得了冠军,胜场数超过其他队伍,胜率也明显高于其他队伍。

正文

柱状图,是一种使用矩形条,对不同类别进行数值比较的统计图表。
在柱状图上,分类变量的每个实体都被表示为一个矩形(通俗讲即为“柱子”),而数值则决定了柱子的高度。

1. 主要元素

柱状图是一种用长方形柱子表示数据的图表。
它包含三个主要元素:

  1. 横轴(x轴):表示数据的类别或时间。
  2. 纵轴(y轴):表示数据的数量或百分比。
  3. 柱子:用于表示每个数据类别或时间段的数量或百分比,柱子的高度与数据的大小成比例。

image.png

2. 适用的场景

柱状图适用于以下分析场景:

  1. 比较不同类别或时间段的数量或百分比。
  2. 显示数据的分布情况,如数据的最大值、最小值、平均值等。
  3. 强调数据的变化趋势。
  4. 比较不同组之间的差异。
  5. 分析数据的增长或下降情况。

3. 不适用的场景

柱状图不适用于以下分析场景:

  1. 数据之间存在比例关系,如占比、比率等,此时应该使用饼图或堆积图。
  2. 数据之间存在时间序列关系,此时应该使用折线图。
  3. 数据之间存在空间关系,此时应该使用地图。
  4. 数据之间存在相关性关系,此时应该使用散点图。

4. 分析实战

这次选用王者荣耀2023年KPL春季赛战队数据:https://databook.top/wzry/2023-spring

4.1. 数据来源

fp = "d:/share/league-2023春季赛.csv"

df = pd.read_csv(fp)
df.loc[:, ["排名", "战队", "比赛场次", "胜场"]]

image.png

4.2. 数据清理

本次实战用柱状图展示前6名的比赛场次和胜场,也就是每个战队有2个柱子。

df.loc[:5, ["排名", "战队", "比赛场次", "胜场"]]

image.png

4.3. 分析结果可视化

data = df.loc[:5, ["排名", "战队", "比赛场次", "胜场"]]

with plt.style.context("seaborn-v0_8"):
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

    teams = data["战队"].tolist()    
    games = {
        "比赛场次": data["比赛场次"].tolist(),
        "胜场": data["胜场"].tolist(),
    }
    width = 0.25
    multiplier = 0

    x = np.arange(len(teams))
    for name, vals in games.items():
        offset = width*multiplier
        rects = ax.bar(x+offset, vals, width, label=name)
        ax.bar_label(rects, padding=3)
        multiplier+=1


    ax.set_title("2023-KPL春季赛前六名")
    ax.set_xticks(x+0.1, teams)
    ax.legend(loc="upper left")

image.png

第一名重庆狼队,比赛场次总数倒数第二,但是胜场数确实第一,胜率明显高于其他队伍,不愧是冠军队伍。

战队,选手和各个英雄的数据都已经整理好分享在上面的URL中,感兴趣的话可以自己分析看看其他数据情况。

与【matplotlib 实战】--柱状图相似的内容:

【matplotlib 实战】--柱状图

柱状图,是一种使用矩形条,对不同类别进行数值比较的统计图表。在柱状图上,分类变量的每个实体都被表示为一个矩形(通俗讲即为“柱子”),而数值则决定了柱子的高度。 1. 主要元素 柱状图是一种用长方形柱子表示数据的图表。它包含三个主要元素: 横轴(x轴):表示数据的类别或时间。 纵轴(y轴):表示数据的

【matplotlib 实战】--百分比柱状图

百分比堆叠式柱状图是一种特殊的柱状图,它的每根柱子是等长的,总额为100%。柱子内部被分割为多个部分,高度由该部分占总体的百分比决定。 百分比堆叠式柱状图不显示数据的“绝对数值”,而是显示“相对比例”。但同时,它也仍然具有柱状图的固有功能,即“比较”——我们可以通过比较多个柱子的构成,分析数值之间的

【matplotlib 实战】--堆叠柱状图

堆叠柱状图,是一种用来分解整体、比较各部分的图。与柱状图类似,堆叠柱状图常被用于比较不同类别的数值。而且,它的每一类数值内部,又被划分为多个子类别,这些子类别一般用不同的颜色来指代。 柱状图帮助我们观察“总量”,堆叠柱状图则可以同时反映“总量”与“结构”。也就是说,堆叠柱状图不仅可以反映总量是多少?

【matplotlib 实战】--直方图

直方图,又称质量分布图,用于表示数据的分布情况,是一种常见的统计图表。 一般用横轴表示数据区间,纵轴表示分布情况,柱子越高,则落在该区间的数量越大。构建直方图时,首先首先就是对数据划分区间,通俗的说即是划定有几根柱子(比如,1980年~2020年的数据,每5年划分一个区间的话,共8个区间)。接着,对

【matplotlib 实战】--饼图

饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表。在饼图中,每个扇形的弧长(以及圆心角和面积)大小,表示该种类占总体的比例,且这些扇形合在一起刚好是一个完全的圆形。 饼图最显著的功能在于表现“占比”。习惯上,人们通过比较饼图扇形的大小来获得对数据的认知。 使用饼图时,须确认各个扇形的数据加起来等

【matplotlib 实战】--平行坐标系

平行坐标系是一种统计图表,它包含多个垂直平行的坐标轴,每个轴表示一个字段,并用刻度标明范围。通过在每个轴上找到数据点的落点,并将它们连接起来形成折线,可以很容易地展示多维数据。随着数据增多,折线会堆叠,分析者可以从中发现数据的特性和规律,比如发现数据之间的聚类关系。 尽管平行坐标系与折线图表面上看起

【matplotlib 实战】--堆叠面积图

堆叠面积图和面积图都是用于展示数据随时间变化趋势的统计图表,但它们的特点有所不同。面积图的特点在于它能够直观地展示数量之间的关系,而且不需要标注数据点,可以轻松地观察数据的变化趋势。而堆叠面积图则更适合展示多个数据系列之间的变化趋势,它们一层层的堆叠起来,每个数据系列的起始点是上一个数据系列的结束点

【matplotlib 实战】--面积图

面积图,或称区域图,是一种随有序变量的变化,反映数值变化的统计图表。 面积图也可用于多个系列数据的比较。这时,面积图的外观看上去类似层叠的山脉,在错落有致的外形下表达数据的总量和趋势。面积图不仅可以清晰地反映出数据的趋势变化,也能够强调不同类别的数据间的差距对比。 面积图的特点在于,折线与自变量坐标

【matplotlib 实战】--折线图

折线图是一种用于可视化数据变化趋势的图表,它可以用于表示任何数值随着时间或类别的变化。 折线图由折线段和折线交点组成,折线段表示数值随时间或类别的变化趋势,折线交点表示数据的转折点。 折线图的方向表示数据的变化方向,即正变化还是负变化,折线的斜率表示数据的变化程度。 1. 主要元素 折线图主要由以下

Python从零到壹丨带你了解图像直方图理论知识和绘制实现

摘要:本文将从OpenCV和Matplotlib两个方面介绍如何绘制直方图,这将为图像处理像素对比提供有效支撑。 本文分享自华为云社区《[Python从零到壹] 五十.图像增强及运算篇之图像直方图理论知识和绘制实现》,作者:eastmount。 一.图像直方图理论知识 灰度直方图是灰度级的函数,描述