Llama2-Chinese项目:4-量化模型

llama2,chinese,项目,量化,模型 · 浏览次数 : 4

小编点评

**AutoGPTQ基础教程** **Introduction** * AutoGPTQ 是一个基于LLLaMA v2的中文文本微调模型。 * 模型包含LLLaMA v2的模型和各种微调参数。 **Model Loading** * 从pretrained模型中加载LLLaMA v2模型。 * 可以从各种微调参数中加载其他参数。 **Inference** * 使用模型进行文本预测。 * 可以使用各种排版格式生成预测结果。 **Advanced Model Loading and Best Practice** * 可以从其他模型中加载预训练模型。 * 可以设置各种微调参数来优化模型性能。 **Inference Experiments with LLaMA v2 7b** * 实验在LLLaMA v2 7b模型上进行文本预测。 * 可以使用各种排版格式生成预测结果。 **其他** * 模型部署的步骤。 * 实验结果。

正文

一.量化模型调用方式
  下面是一个调用FlagAlpha/Llama2-Chinese-13b-Chat[1]的4bit压缩版本FlagAlpha/Llama2-Chinese-13b-Chat-4bit[2]的例子:

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized('FlagAlpha/Llama2-Chinese-13b-Chat-4bit', device="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('FlagAlpha/Llama2-Chinese-13b-Chat-4bit',use_fast=False)
input_ids = tokenizer(['<s>Human: 怎么登上火星\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')        
generate_input = {
    "input_ids":input_ids,
    "max_new_tokens":512,
    "do_sample":True,
    "top_k":50,
    "top_p":0.95,
    "temperature":0.3,
    "repetition_penalty":1.3,
    "eos_token_id":tokenizer.eos_token_id,
    "bos_token_id":tokenizer.bos_token_id,
    "pad_token_id":tokenizer.pad_token_id
}
generate_ids  = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

  这里面有个问题就是由Llama2-Chinese-13b-Chat如何得到Llama2-Chinese-13b-Chat-4bit?这涉及另外一个AutoGPTQ库(一个基于GPTQ算法,简单易用且拥有用户友好型接口的大语言模型量化工具包)[3]。先梳理下思路,由于meta-llama/Llama-2-13b-chat-hf对中文支持较差,所以采用中文指令集在此基础上进行LoRA微调得到了FlagAlpha/Llama2-Chinese-13b-Chat-LoRA,而FlagAlpha/Llama2-Chinese-13b-Chat=FlagAlpha/Llama2-Chinese-13b-Chat-LoRA+meta-llama/Llama-2-13b-chat-hf,即将两者参数合并后的版本。FlagAlpha/Llama2-Chinese-13b-Chat-4bit就是对FlagAlpha/Llama2-Chinese-13b-Chat进行4bit量化后的版本。总结起来就是如何合并,如何量化这2个问题。官方提供的一些合并参数后的模型[4],如下所示:

二.如何合并LoRA Model和Base Model
  网上合并LoRA参数和原始模型的脚本很多,参考文献[6]亲测可用。合并后的模型格式包括pthhuggingface两种。如下所示:
1.LoRA Model文件列表
  对于LLama2-7B-hf进行LoRA微调生成文件如下所示:

adapter_config.json
adapter_model.bin
optimizer.pt
README.md
rng_state.pth
scheduler.pt
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
trainer_state.json
training_args.bin

2.Base Model文件列表
  LLama2-7B-hf文件列表,如下所示:

config.json
generation_config.json
gitattributes.txt
LICENSE.txt
model-00001-of-00002.safetensors
model-00002-of-00002.safetensors
model.safetensors.index.json
pytorch_model-00001-of-00002.bin
pytorch_model-00002-of-00002.bin
pytorch_model.bin.index.json
README.md
Responsible-Use-Guide.pdf
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
USE_POLICY.md

3.合并后huggingface文件列表
  合并LoRA Model和Base Model后,生成huggingface格式文件列表,如下所示:

config.json
generation_config.json
pytorch_model-00001-of-00007.bin
pytorch_model-00002-of-00007.bin
pytorch_model-00003-of-00007.bin
pytorch_model-00004-of-00007.bin
pytorch_model-00005-of-00007.bin
pytorch_model-00006-of-00007.bin
pytorch_model-00007-of-00007.bin
pytorch_model.bin.index.json
special_tokens_map.json
tokenizer.model
tokenizer_config.json

4.合并后pth文件列表
  合并LoRA Model和Base Model后,生成pth格式文件列表,如下所示:

consolidated.00.pth
params.json
special_tokens_map.json
tokenizer.model
tokenizer_config.json

5.合并脚本[6]思路
  以合并后生成huggingface模型格式为例,介绍合并脚本的思路,如下所示:

# 步骤1:加载base model
base_model = LlamaForCausalLM.from_pretrained(
    base_model_path, # 基础模型路径
    load_in_8bit=False, # 加载8位
    torch_dtype=torch.float16, # float16
    device_map={"""cpu"}, # cpu
)

# 步骤2:遍历LoRA模型
for lora_index, lora_model_path in enumerate(lora_model_paths):
    # 步骤3:根据base model和lora model来初始化PEFT模型
    lora_model = PeftModel.from_pretrained(
                base_model, # 基础模型
                lora_model_path, # LoRA模型路径
                device_map={"""cpu"}, # cpu
                torch_dtype=torch.float16, # float16
            )
    # 步骤4:将lora model和base model合并为一个独立的model         
    base_model = lora_model.merge_and_unload()
    ......

# 步骤5:保存tokenizer
tokenizer.save_pretrained(output_dir)

# 步骤6:保存合并后的独立model
LlamaForCausalLM.save_pretrained(base_model, output_dir, save_function=torch.save, max_shard_size="2GB")

  合并LoRA Model和Base Model过程中输出日志可参考huggingface[7]和pth[8]。

三.如何量化4bit模型
  如果得到了一个训练好的模型,比如LLama2-7B,如何得到LLama2-7B-4bit呢?因为模型参数越来越多,多参数模型的量化还是会比少参数模型的非量化效果要好。量化的方案非常的多[9][12],比如AutoGPTQ、GPTQ-for-LLaMa、exllama、llama.cpp等。下面重点介绍下AutoGPTQ的基础实践过程[10],AutoGPTQ进阶教程参考文献[11]。

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig # 量化配置
from transformers import AutoTokenizer

# 第1部分:量化一个预训练模型
pretrained_model_name = r"L:/20230713_HuggingFaceModel/20230903_Llama2/Llama-2-7b-hf" # 预训练模型路径
quantize_config = BaseQuantizeConfig(bits=4, group_size=128) # 量化配置,bits表示量化后的位数,group_size表示分组大小
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_name, quantize_config) # 加载预训练模型
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) # 加载tokenizer

examples = [ # 量化样本
    tokenizer(
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    )
]
# 翻译:准备examples(一个只有两个键'input_ids'和'attention_mask'的字典列表)来指导量化。这里只使用一个文本来简化代码,但是应该注意,使用的examples越多,量化后的模型就越好(很可能)。
model.quantize(examples) # 执行量化操作,examples提供量化过程所需的示例数据
quantized_model_dir = "./llama2_quantize_AutoGPTQ" # 保存量化后的模型
model.save_quantized(quantized_model_dir) # 保存量化后的模型


# 第2部分:加载量化模型和推理
from transformers import TextGenerationPipeline # 生成文本

device = "cuda:0"
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device=device) # 加载量化模型
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer, device=device) # 得到pipeline管道
print(pipeline("auto-gptq is")[0]["generated_text"]) # 生成文本

参考文献:
[1]https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat
[2]https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat-4bit
[3]https://github.com/PanQiWei/AutoGPTQ/blob/main/README_zh.md
[4]https://github.com/FlagAlpha/Llama2-Chinese#基于Llama2的中文微调模型
[5]CPU中合并权重(合并思路仅供参考):https://github.com/yangjianxin1/Firefly/blob/master/script/merge_lora.py
[6]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora.py
[7]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora_log/merge_llama_with_lora_hf_log
[8]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora_log/merge_llama_with_lora_pt_log
[9]LLaMa量化部署:https://zhuanlan.zhihu.com/p/641641929
[10]AutoGPTQ基础教程:https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md
[11]AutoGPTQ进阶教程:https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/02-Advanced-Model-Loading-and-Best-Practice.md
[12]Inference Experiments with LLaMA v2 7b:https://github.com/djliden/inference-experiments/blob/main/llama2/README.md
[13]llama2_quantize_AutoGPTQ:https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/llama2_quantize_AutoGPTQ.py

与Llama2-Chinese项目:4-量化模型相似的内容:

Llama2-Chinese项目:4-量化模型

一.量化模型调用方式 下面是一个调用FlagAlpha/Llama2-Chinese-13b-Chat[1]的4bit压缩版本FlagAlpha/Llama2-Chinese-13b-Chat-4bit[2]的例子: from transformers import AutoTokenizerfro

Llama2-Chinese项目:3.2-LoRA微调和模型量化

提供LoRA微调和全量参数微调代码,训练数据为data/train_sft.csv,验证数据为data/dev_sft.csv,数据格式为"Human: "+问题+"\nAssistant: "+答案。本文主要介绍Llama-2-7b模型LoRA微调以及4bit量化的实践过程。

Llama2-Chinese项目:1-项目介绍和模型推理

Atom-7B与Llama2间的关系:Atom-7B是基于Llama2进行中文预训练的开源大模型。为什么叫原子呢?因为原子生万物,Llama中文社区希望原子大模型未来可以成为构建AI世界的基础单位。目前社区发布了6个模型,如下所示: FlagAlpha/Atom-7BFlagAlpha/Llama2

Llama2-Chinese项目:2.1-Atom-7B预训练

虽然Llama2的预训练数据相对于第一代LLaMA扩大了一倍,但是中文预训练数据的比例依然非常少,仅占0.13%,这也导致了原始Llama2的中文能力较弱。为了能够提升模型的中文能力,可以采用微调和预训练两种路径,其中: 微调需要的算力资源少,能够快速实现一个中文Llama的雏形。但缺点也显而易见,

Llama2-Chinese项目:2.2-大语言模型词表扩充

因为原生LLaMA对中文的支持很弱,一个中文汉子往往被切分成多个token,因此需要对其进行中文词表扩展。思路通常是在中文语料库上训练一个中文tokenizer模型,然后将中文tokenizer与LLaMA原生tokenizer进行合并,最终得到一个扩展后的tokenizer模型。国内Chinese

Llama2-Chinese项目:2.3-预训练使用QA还是Text数据集?

Llama2-Chinese项目给出pretrain的data为QA数据格式,可能会有疑问pretrain不应该是Text数据格式吗?而在Chinese-LLaMA-Alpaca-2和open-llama2预训练使用的LoRA技术,给出pretrain的data为Text数据格式。所以推测应该pre

Llama2-Chinese项目:5-推理加速

随着大模型参数规模的不断增长,在有限的算力资源下,提升模型的推理速度逐渐变为一个重要的研究方向。常用的推理加速框架包含lmdeploy、FasterTransformer和vLLM等。 一.lmdeploy推理部署 lmdeploy由上海人工智能实验室开发,推理使用C++/CUDA,对外提供pyth

Llama2-Chinese项目:6-模型评测

测试问题筛选自AtomBulb[1],共95个测试问题,包含:通用知识、语言理解、创作能力、逻辑推理、代码编程、工作技能、使用工具、人格特征八个大的类别。 1.测试中的Prompt 例如对于问题"列出5种可以改善睡眠质量的方法",如下所示: [INST] <>You are a helpf

Llama2-Chinese项目:7-外延能力LangChain集成

本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。 1.调用Llama2类 针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下

Llama2-Chinese项目:8-TRL资料整理

TRL(Transformer Reinforcement Learning)是一个使用强化学习来训练Transformer语言模型和Stable Diffusion模型的Python类库工具集,听上去很抽象,但如果说主要是做SFT(Supervised Fine-tuning)、RM(Reward