【matplotlib 实战】--平行坐标系

matplotlib,实战,平行,坐标系 · 浏览次数 : 16

小编点评

**主要元素:** * **坐标轴:**垂直于数据维度的坐标轴,每个轴代表一个数据维度。 * **数据点:**每个数据点由一条连接其所有坐标轴的线段表示。 * **连接线:**将同一数据点在不同维度上的线段连接起来,形成数据点的轮廓。 **适用的场景:** * 多维数据分析 * 数据分类和聚类 * 数据交互与过滤 **不适用的场景:** * 数据维度过多 * 数据维度之间差异较大 * 数据具有时间序列 **分析结果可视化方法:** 1. **matplotlib**库用于创建平行坐标系图。 2. **matplotlib.path**模块用于创建连接线和路径。 3. **matplotlib.pyplot**库用于设置坐标轴、标题和legend。 **其他说明:** * 图像中教师数量远小于学生数量。 * 图像用于比较不同数据集的相同属性。

正文

平行坐标系是一种统计图表,它包含多个垂直平行的坐标轴,每个轴表示一个字段,并用刻度标明范围。通过在每个轴上找到数据点的落点,并将它们连接起来形成折线,可以很容易地展示多维数据。
随着数据增多,折线会堆叠,分析者可以从中发现数据的特性和规律,比如发现数据之间的聚类关系。

尽管平行坐标系与折线图表面上看起来相似,但它并不表示趋势,各个坐标轴之间也没有因果关系。
因此,在使用平行坐标系时,轴的顺序是可以人为决定的,这会影响阅读的感知和判断。较近的两根坐标轴会使对比感知更强烈。
因此,为了得出最合适和美观的排序方式,通常需要进行多次试验和比较。

同时,尝试不同的排序方式也可能有助于得出更多的结论。

此外,平行坐标系的每个坐标轴很可能具有不同的数据范围,这容易导致读者的误解。
因此,在绘制图表时,最好明确标明每个轴上的最小值和最大值。

1. 主要元素

平行坐标系是一种常用的数据可视化方法,用于展示多个维度的数据,并通过连接这些维度的线段来揭示它们之间的关系。

它的主要元素包括:

  1. 坐标轴:平行坐标系通常由垂直于数据维度的坐标轴组成,每个坐标轴代表一个数据维度。
  2. 数据点:每个数据点在平行坐标系中由一条连接各个坐标轴的线段表示,线段的位置和形状反映了数据点在各个维度上的取值。
  3. 连接线:连接线用于将同一数据点在不同维度上的线段连接起来,形成数据点的轮廓,帮助观察者理解数据点在各个维度上的变化趋势。

image.png

2. 适用的场景

平行坐标系适用的场景有:

  • 多维数据分析:平行坐标系适用于展示多个维度的数据,帮助观察者发现不同维度之间的关系和趋势,例如在探索数据集中的模式、异常值或相关性时。
  • 数据分类和聚类:通过观察数据点的轮廓和分布,可以帮助观察者识别不同的数据类别或聚类。
  • 数据交互与过滤:平行坐标系可以支持交互式数据探索和过滤,通过选择或操作特定的坐标轴或线段,可以对数据进行筛选和聚焦。

3. 不适用的场景

平行坐标系不适用的场景有:

  • 数据维度过多:当数据维度过多时,平行坐标系的可读性和解释性可能会下降,因为线段之间的交叉和重叠会导致视觉混乱。
  • 数据维度之间差异较大:如果数据在不同维度上的取值范围差异较大,那么线段之间的比较和分析可能会受到影响,因为较小的取值范围可能会被较大的取值范围所掩盖。
  • 数据具有时间序列:平行坐标系并不适用于展示时间序列数据,因为它无法准确地表示数据的时间顺序。在这种情况下,其他的数据可视化方法,如折线图或时间轴图,可能更适合。

4. 分析实战

平行坐标系适用于展示具有相同属性的一系列数据,每个坐标系代表一种属性。
这次选用了国家统计局公开的教育类数据:https://databook.top/nation/A0M

选取其中几类具有相同属性的数据:

  1. A0M06:各级各类学校专任教师数
  2. A0M07:各级各类学校招生数
  3. A0M08:各级各类学校在校学生数
  4. A0M09:各级各类学校毕业生数

4.1. 数据来源

四个原始数据集是按照年份统计的:

fp = "d:/share/A0M06.csv"

df = pd.read_csv(fp)
df

image.png

这是教师相关统计数据,其他3个数据集的结构也类似。

4.2. 数据清理

平行坐标系比较的是属性,不需要每年的数据。
所以,对于上面4个数据集,分别提取2022年小学初中高中特殊教育相关4个属性的数据。

import os

files = {
    "教师数": "A0M06.csv",
    "招生数": "A0M07.csv",
    "在校学生数": "A0M08.csv",
    "毕业学生数": "A0M09.csv",
}
data_dir = "d:/share"

data = pd.DataFrame()
for key in files:
    fp = os.path.join(data_dir, files[key])
    df = pd.read_csv(fp)
    df_filter = pd.DataFrame(
        [[
            key,
            df.loc[225, "value"],
            df.loc[135, "value"],
            df.loc[90, "value"],
            df.loc[270, "value"],
        ]],
        columns=["name", "小学", "初中", "高中", "特殊教育"],
    )
    data = pd.concat([data, df_filter])

data

image.png

4.3. 分析结果可视化

平行坐标系在 matplotlib 中没有直接提供,实现起来也不难:

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches
import numpy as np

xnames = data.loc[:, "name"]
ynames = ["小学", "初中", "高中", "特殊教育"]
ys = np.array(data.iloc[:, 1:].values.tolist())
ymins = ys.min(axis=0)
ymaxs = ys.max(axis=0)
dys = ymaxs - ymins
ymins -= dys * 0.05  # Y轴的上下限增加 5% 的冗余
ymaxs += dys * 0.05

#每个坐标系的上下限不一样,调整显示方式
zs = np.zeros_like(ys)
zs[:, 0] = ys[:, 0]
zs[:, 1:] = (ys[:, 1:] - ymins[1:]) / dys[1:] * dys[0] + ymins[0]

fig, host = plt.subplots(figsize=(10, 4))

axes = [host] + [host.twinx() for i in range(ys.shape[1] - 1)]
for i, ax in enumerate(axes):
    ax.set_ylim(ymins[i], ymaxs[i])
    ax.spines["top"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    if ax != host:
        ax.spines["left"].set_visible(False)
        ax.yaxis.set_ticks_position("right")
        ax.spines["right"].set_position(("axes", i / (ys.shape[1] - 1)))

host.set_xlim(0, ys.shape[1] - 1)
host.set_xticks(range(ys.shape[1]))
host.set_xticklabels(ynames, fontsize=14)
host.tick_params(axis="x", which="major", pad=7)
host.spines["right"].set_visible(False)
host.xaxis.tick_top()
host.set_title("各类学校的师生数目比较", fontsize=18, pad=12)

colors = plt.cm.Set1.colors
legend_handles = [None for _ in xnames]
for j in range(ys.shape[0]):
    verts = list(
        zip(
            [x for x in np.linspace(0, len(ys) - 1, len(ys) * 3 - 2, endpoint=True)],
            np.repeat(zs[j, :], 3)[1:-1],
        )
    )
    codes = [Path.MOVETO] + [Path.CURVE4 for _ in range(len(verts) - 1)]
    path = Path(verts, codes)
    patch = patches.PathPatch(
        path, facecolor="none", lw=2, alpha=0.7, edgecolor=colors[j]
    )
    legend_handles[j] = patch
    host.add_patch(patch)

host.legend(
    xnames,
    loc="lower center",
    bbox_to_anchor=(0.5, -0.18),
    ncol=len(xnames),
    fancybox=True,
    shadow=True,
)
plt.tight_layout()
plt.show()

image.png

从图表中,可以看出一下几点,和我们对实际情况的印象是差不多的:

  1. 教师数量远小于学生数量
  2. 从小学到初中,高中,学生数量不断减少
  3. 招生数量和毕业生数量差不多

平行坐标系用于比较不同数据集相同属性

与【matplotlib 实战】--平行坐标系相似的内容:

【matplotlib 实战】--平行坐标系

平行坐标系是一种统计图表,它包含多个垂直平行的坐标轴,每个轴表示一个字段,并用刻度标明范围。通过在每个轴上找到数据点的落点,并将它们连接起来形成折线,可以很容易地展示多维数据。随着数据增多,折线会堆叠,分析者可以从中发现数据的特性和规律,比如发现数据之间的聚类关系。 尽管平行坐标系与折线图表面上看起

【matplotlib 实战】--饼图

饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表。在饼图中,每个扇形的弧长(以及圆心角和面积)大小,表示该种类占总体的比例,且这些扇形合在一起刚好是一个完全的圆形。 饼图最显著的功能在于表现“占比”。习惯上,人们通过比较饼图扇形的大小来获得对数据的认知。 使用饼图时,须确认各个扇形的数据加起来等

【matplotlib 实战】--百分比柱状图

百分比堆叠式柱状图是一种特殊的柱状图,它的每根柱子是等长的,总额为100%。柱子内部被分割为多个部分,高度由该部分占总体的百分比决定。 百分比堆叠式柱状图不显示数据的“绝对数值”,而是显示“相对比例”。但同时,它也仍然具有柱状图的固有功能,即“比较”——我们可以通过比较多个柱子的构成,分析数值之间的

【matplotlib 实战】--堆叠柱状图

堆叠柱状图,是一种用来分解整体、比较各部分的图。与柱状图类似,堆叠柱状图常被用于比较不同类别的数值。而且,它的每一类数值内部,又被划分为多个子类别,这些子类别一般用不同的颜色来指代。 柱状图帮助我们观察“总量”,堆叠柱状图则可以同时反映“总量”与“结构”。也就是说,堆叠柱状图不仅可以反映总量是多少?

【matplotlib 实战】--直方图

直方图,又称质量分布图,用于表示数据的分布情况,是一种常见的统计图表。 一般用横轴表示数据区间,纵轴表示分布情况,柱子越高,则落在该区间的数量越大。构建直方图时,首先首先就是对数据划分区间,通俗的说即是划定有几根柱子(比如,1980年~2020年的数据,每5年划分一个区间的话,共8个区间)。接着,对

【matplotlib 实战】--柱状图

柱状图,是一种使用矩形条,对不同类别进行数值比较的统计图表。在柱状图上,分类变量的每个实体都被表示为一个矩形(通俗讲即为“柱子”),而数值则决定了柱子的高度。 1. 主要元素 柱状图是一种用长方形柱子表示数据的图表。它包含三个主要元素: 横轴(x轴):表示数据的类别或时间。 纵轴(y轴):表示数据的

【matplotlib 实战】--堆叠面积图

堆叠面积图和面积图都是用于展示数据随时间变化趋势的统计图表,但它们的特点有所不同。面积图的特点在于它能够直观地展示数量之间的关系,而且不需要标注数据点,可以轻松地观察数据的变化趋势。而堆叠面积图则更适合展示多个数据系列之间的变化趋势,它们一层层的堆叠起来,每个数据系列的起始点是上一个数据系列的结束点

【matplotlib 实战】--面积图

面积图,或称区域图,是一种随有序变量的变化,反映数值变化的统计图表。 面积图也可用于多个系列数据的比较。这时,面积图的外观看上去类似层叠的山脉,在错落有致的外形下表达数据的总量和趋势。面积图不仅可以清晰地反映出数据的趋势变化,也能够强调不同类别的数据间的差距对比。 面积图的特点在于,折线与自变量坐标

【matplotlib 实战】--折线图

折线图是一种用于可视化数据变化趋势的图表,它可以用于表示任何数值随着时间或类别的变化。 折线图由折线段和折线交点组成,折线段表示数值随时间或类别的变化趋势,折线交点表示数据的转折点。 折线图的方向表示数据的变化方向,即正变化还是负变化,折线的斜率表示数据的变化程度。 1. 主要元素 折线图主要由以下

Python从零到壹丨带你了解图像直方图理论知识和绘制实现

摘要:本文将从OpenCV和Matplotlib两个方面介绍如何绘制直方图,这将为图像处理像素对比提供有效支撑。 本文分享自华为云社区《[Python从零到壹] 五十.图像增强及运算篇之图像直方图理论知识和绘制实现》,作者:eastmount。 一.图像直方图理论知识 灰度直方图是灰度级的函数,描述