随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,通过构建多个决策树并汇总其预测结果来完成分类或回归任务。每棵决策树的构建过程中都引入了随机性,包括数据采样和特征选择的随机性。
随机森林的基本原理可以概括如下:
优点:
缺点:
构建随机森林(Random Forest)算法时,有一些重要的要点和步骤,这些要点涉及数据准备、模型构建、调参等方面。下面是构建随机森林算法的关键要点:
Alink库中RandomForestClassifier
随机森林组件支持分类的应用场景。该算子函数的说明可参考。
实现代码:
/**
* 随机森林算法
* 构建随机森林模型,参数设置如下:
* 1. 设置树的棵数(森林就是由树组成,因此需要设置树的棵数)
* 2. 设置最大深度
* 3. 设置分箱最大值(分箱binning,就是将连续特征数据离散化/分段,变成离散值;是一种常用的数据预处理方式)
* */
static void c_7() throws Exception {
AkSourceBatchOp train_sample = new AkSourceBatchOp().setFilePath(DATA_DIR + TRAIN_SAMPLE_FILE);
AkSourceBatchOp test_data = new AkSourceBatchOp().setFilePath(DATA_DIR + TEST_FILE);
String[] featureColNames = ArrayUtils.removeElement(test_data.getColNames(), LABEL_COL_NAME);
new RandomForestClassifier()
.setNumTrees(20)
.setMaxDepth(4)
.setMaxBins(512)
.setFeatureCols(featureColNames)
.setLabelCol(LABEL_COL_NAME)
.setPredictionCol(PREDICTION_COL_NAME)
.setPredictionDetailCol(PRED_DETAIL_COL_NAME)
.fit(train_sample)
.transform(test_data)
.link(
new EvalBinaryClassBatchOp()
.setLabelCol(LABEL_COL_NAME)
.setPredictionDetailCol(PRED_DETAIL_COL_NAME)
.lazyPrintMetrics("RandomForest with Stratified Sample")
);
BatchOperator.execute();
}
Alink库中RandomForestRegressor随机森林组件支持回归的应用场景。该算子函数的说明可参考。
实现代码:
/**
* 随机森林算法
* 构建随机森林模型,参数设置如下:
* 1. 从2-128,设置决策树的数量
* 2. 设置特征列
* 3. 设置标签列
*/
for (int numTrees : new int[] {2, 4, 8, 16, 32, 64, 128}) {
new RandomForestRegressor()
.setNumTrees(numTrees)
.setFeatureCols(FEATURE_COL_NAMES)
.setLabelCol(LABEL_COL_NAME)
.setPredictionCol(PREDICTION_COL_NAME)
.fit(train_data)
.transform(test_data)
.link(
new EvalRegressionBatchOp()
.setLabelCol(LABEL_COL_NAME)
.setPredictionCol(PREDICTION_COL_NAME)
.lazyPrintMetrics("RandomForestRegressor - " + numTrees)
);
BatchOperator.execute();
}