探索Lighthouse性能分数计算背后的奥秘

探索,lighthouse,性能,分数,计算,背后,奥秘 · 浏览次数 : 0

小编点评

**指标定义** * **LCP (Largest Contentful Paint)**: 用户感知页面最大内容可见的最持续时间。 * **LCP (Largest Contentful Paint)**: 用户感知页面最大内容可见的最持续时间。 **可实现性** * **LCP (Largest Contentful Paint)**: 2.5 秒是可实现的良好阈值。 * **LCP (Largest Contentful Paint)**: 4 秒是可实现的欠佳阈值。 **建议** * **LCP (Largest Contentful Paint)**: 2.5 秒是建议的良好阈值。 * **LCP (Largest Contentful Paint)**: 4 秒是建议的欠佳阈值。 **权重** * **LCP (Largest Contentful Paint)**: 指权值越高的指标,对性能的得分影响就越大。

正文

作为开发我们都知道,页面性能很重要,一个性能良好的页面可以给用户带来非常好的用户体验。那么,怎么能知道自己写的页面性能是好是坏呢?

LighthouseChrome提供给开发者用来测量页面性能的工具。通过Lighthouse,我们可以很清楚的看到页面的性能情况。

当前页面的性能总体得分为96分,是非常优异的。

这个分数是怎么得出来的?这些指标又跟分数有什么样的关系呢?让我们来一探究竟。

Lighthouse性能分数的计算

上图中提到了Lighthouse是基于FCP (First Contentful Paint)SI (Speed Index)LCP (Largest Contentful Paint)TBT (Total Blocking Time)CLS (Cumulative Layout Shift)5个指标来计算性能得分的。

点击“查看计算机”,可以看到以下页面:

页面中包含了性能的指标、数据(value)、得分(Metric Score)以及权重(Weighting),而最终的性能得分就是这些指标分数的加权平均值。即(从上往下开始计算):(100*0.1 + 95*0.1 + 84*0.25 + 100 * 0.3 + 100 * 0.25) / (0.1+ 0.1+ 0.25+0.3+0.25) 约等于 96(四舍五入)。

加权平均值: 即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。点击了解更多

指标的定义

Web指标是Google开创的一项新计划,旨在为网络质量信号提供统一指导,这些信号对于提供出色的网络用户体验至关重要。

指标定义的框架

长久以来,网络性能都是通过load事件进行测量的。但是通过这个事件获取到的数据,跟实际的用户体验并不是很相符。

举个例子:服务器可以通过加载一个“最小”的页面来进行响应,响应完成之后,再通过异步获取主要的页面信息进行展示。通过load事件进行测量,性能上看起来很优秀,但是用户实际上看到页面的时候时间可能变得更长了(因为多了一次请求)。这明显跟真实的用户体验不匹配。

为了能更准确地测量用户的网页性能体验,Chrome团队成员与W3C Web性能工作组共同合作,围绕几个关键问题构建出了指标的框架:

可以根据这几个点去对指标进行定义,这些都是跟用户息息相关的。

指标类型

用户对性能感知相关的指标可以分为以下几类:

  • Perceived load speed 感知加载速度: 页面在屏幕上加载并渲染出所有视觉元素的速度。

  • Load responsiveness 加载响应度: 为了使组件对用户交互作出快速响应,页面加载和执行任何所需 JavaScript 代码的速度。

  • Runtime responsiveness 运行时响应度: 页面在加载后,对用户交互的响应速度。

  • Visual stability 视觉稳定性: 页面上的元素是否会出现让用户感到意外的偏移,并对用户交互造成潜在的干扰?

  • Smoothness 平滑度: 过渡和动画在页面状态切换的过程中是否具有稳定的帧速率和顺滑的流动性?

通过上述的性能指标类型表明,只用一项指标去捕获页面的所有性能特征是远远不够的。

核心指标

多年来,Google 提供了许多性能测量和性能报告工具,导致一些开发者发现大量的工具和指标令人应接不暇。

开发者想要了解的是他们提供给用户的体验质量是怎样的,并非每个人都需要成为性能专家。我们并不需要去了解所有的指标,只需要专注于一些重点的指标就可以了。

核心Web指标的构成会随着时间的推移而发展 。当前针对2020年的指标构成侧重于用户体验的三个方面——加载性能、交互性和视觉稳定性——并包括以下指标(及各指标相应的阈值):

3个指标可以作为网站的一组通用指标,但并不是说我们只需要关注以上这几个核心指标就可以了。在某些情况下,我们将引入新指标来查漏补缺,来捕获完整的性能全貌,能够体现出你网页的真实用户体验才是最佳的指标。

其他一些重要的指标:

  • First contentful paint 首次内容绘制 (FCP):测量页面从开始加载到页面内容的任何部分在屏幕上完成渲染的时间。

  • Time to Interactive 可交互时间 (TTI):测量页面从开始加载到视觉上完成渲染、初始脚本(如果有的话)完成加载,并能够快速、可靠地响应用户输入所需的时间。

  • Total blocking time 总阻塞时间 (TBT):测量 FCP 与 TTI 之间的总时间,这期间,主线程被阻塞的时间过长,无法作出输入响应。

指标阈值定义

标准

在为核心Web指标建立阈值时,Chrome团队首先确定了每个阈值必须满足的标准。

高质量的用户体验

  • 确保满足核心Web指标"良好"阈值的页面能够提供高质量的用户体验。

  • 人类感知和HCI研究,有时会使用单个固定阈值来进行概括,但底层研究中通常会用范围值来表示,聚合和匿名Chrome指标数据也显示出了平滑且连续的分布。所以指标的阈值会用范围值来表示

可通过现有网络内容实现

为了确保网站所有者能够成功地优化他们的网站并满足"良好"阈值,我们要求这些阈值对于网络上现有的内容是可以实现的。

例如,虽然零毫秒是理想的LCP"良好"阈值,并且可以带来即时加载体验,但由于网络和设备处理延迟,零毫秒的阈值实际上在大多数情况下都无法实现。因此,对于核心Web指标来说,零毫秒不是一个合理的LCP"良好"阈值。

"良好"阈值:在评估核心Web指标的候选"良好"阈值时,我们会根据Chrome用户体验报告(CrUX)中的数据验证这些阈值是否可以实现。为了确认一个阈值是可以实现的,要求目前至少有10%的域满足"良好"阈值。

"欠佳"阈值: 通过确定当前只有少数域未能达到的性能水平来建立"欠佳"阈值。除非有"欠佳"阈值定义的相关研究,否则在默认情况下,性能表现最差的 10-30%的域将被归类为"欠佳"。

总结

如果针对某一指标有相关的用户体验研究,并且对文献中的数值范围有合理共识,那么我们会用这个范围作为输入来指导我们的阈值选取过程

在没有相关的用户体验研究的情况下,会对满足不同指标候选阈值的真实世界页面进行评估,从而确定一个能带来良好用户体验的阈值。

在评估候选阈值时,发现这些标准有时会相互冲突。而用户行为指标又显示了行为的逐渐变化,所以通常没有唯一"正确"的指标阈值,有时可能需要从多个合理的候选阈值中进行选择。

示例—— LCP (Largest Contentful Paint) 阈值标准定制

一、体验质量

米勒和卡德的研究将用户在失去注意力之前的等待时间描述为一个从大约0.3秒到3 秒的范围,也就表明我们的LCP"良好"阈值应该在这个范围内。此外,考虑到目前的首次内容绘制"良好"阈值为1秒,并且最大内容绘制通常发生在首次内容绘制之后,可以进一步将LCP候选阈值的范围限制在1秒到3秒之间。

二、可实现性

利用CrUX(Chrome User Experience Report)的数据,我们可以确定网络上满足LCP候选"良好"阈值的域所占的百分比。

只有不到10%的域满足1秒阈值,但1.5秒到3秒之间的其他所有阈值也都满足我们的要求,即至少有10%的域满足"良好"阈值,因此这些阈值仍然是有效的候选值。

为了确保所选取的阈值对于优化良好的网站始终都可实现,Chrome团队分析了全网表现最出色的网站的LCP性能,从而确定哪些阈值对于这些网站是始终都可实现的。具体来说,我们的目标是确定一个对于表现最出色的网站来说,始终可以在第75个百分位数实现的阈值。最终发现1.5秒和2秒的阈值并不是始终都可以实现的,而2.5秒的阈值是始终可以实现的。

为了确定LCP的"欠佳"阈值,我们利用CrUX数据来确定大多数域能够满足的阈值:

在阈值为4秒的情况下,大约26%的手机端域和19%的桌面端域将被归类为欠佳。这些百分比落在10-30%的目标范围内,因此,4秒是可接受的"欠佳"阈值。

因此,得出结论,对于最大内容绘制来说,2.5秒是一个合理的"良好"阈值,4秒是一个合理的"欠佳"阈值。

指标分数

一旦Lighthouse收集了性能指标(大多数以毫秒为单位报告),它就会通过查看指标值在其Lighthouse评分分布上的位置,将每个原始指标值转换为0100之间的指标分数。评分分布是从HTTP Archive上真实网站性能数据的性能指标得出的对数正态分布。

例如,最大内容绘制(LCP)衡量用户何时感知到页面的最大内容可见。LCP的指标值表示用户启动页面加载和页面呈现其主要内容之间的持续时间。根据真实网站数据,表现最好的网站在大约1,220毫秒内渲染LCP,因此指标值映射为99分。

HTTPArchive 数据的第25个百分位数变为50分(中值控制点),第8 个百分位数变为90分(良好/绿色控制点)。

指标的权重

性能分数是由指标的加权平均计算出来的,一般来说,权重越高的指标,对性能的得分影响就越大。

为了使用户感知的性能处于一个相对平衡的状态,权重会随着时间而改变。因为Lighthouse团队会定期的进行调研,根据用户的反馈来找出对用户感知的性能影响最大的因素,从而修改指标和权重。

下图为 Lighthouse 10Lighthouse 8的指标及权重变化对比:

如果想要了解更多可以查看:web性能指标更新记录

结束语

我们通过上述了解了Lighthouse性能得分计算背后的逻辑,没有去了解之前还不知道Chrome团队为了些事情做了大量的工作。通过对用户行为和感知的大量研究、实际的数据及用户反馈来定制和调整标准,有理有据,也更能反馈出实际的情况。只能说是真Niubility

参考资料

Lighthouse performance scoring

以用户为中心的性能指标

Web 指标

定义核心 Web 指标阈值

与探索Lighthouse性能分数计算背后的奥秘相似的内容:

探索Lighthouse性能分数计算背后的奥秘

作为开发我们都知道,页面性能很重要,一个性能良好的页面可以给用户带来非常好的用户体验。那么,怎么能知道自己写的页面性能是好是坏呢? Lighthouse 是Chrome提供给开发者用来测量页面性能的工具。通过Lighthouse,我们可以很清楚的看到页面的性能情况。 当前页面的性能总体得分为96分,

[转帖]探索惊群 ①

https://wenfh2020.com/2021/09/25/thundering-herd/ 惊群比较抽象,类似于抢红包 😁。它多出现在高性能的多进程/多线程服务中,例如:nginx。 探索惊群 系列文章将深入 Linux (5.0.1) 内核,透过 多进程模型 去剖析惊群现象、惊群原理、惊

探索贪心算法:解决优化问题的高效策略

贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。 贪心算法的基本概念 贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望

《探索Python Requests中的代理应用与实践》

本文详细介绍了如何在Python的requests库中使用高匿代理和隧道代理,以及如何部署一个简易的代理IP池来提高爬虫的稳定性和匿名性。同时,文章还深入探讨了野生代理的来源及其潜在的安全风险和使用限制。这篇文章适合希望进一步了解代理技术及其在网络爬虫开发中应用的读者。

Linux-Cgroup V2 初体验

本文主要记录 Linux Cgroup V2 版本基本使用操作,包括 cpu、memory 子系统演示。 1. 开启 Cgroup V2 版本检查 通过下面这条命令来查看当前系统使用的 Cgroups V1 还是 V2 stat -fc %T /sys/fs/cgroup/ 如果输出是cgroup2

MinIO使用记录

探索MinIO:高性能、分布式对象存储解决方案 注:本文除代码外多数为AI生成 最近因为有项目需要换成Amazon S3的云存储,所以把之前做过的minio部分做一个记录,后面也会把基于这版改造的S3方法发出来记录。 MinIO简介 MinIO是一款高性能、分布式对象存储服务器,设计用于在大规模环境

探索Semantic Kernel内置插件:深入了解HttpPlugin的应用

前言 上一章我们熟悉了Semantic Kernel中的内置插件和对ConversationSummaryPlugin插件进行了实战,本章我们讲解一下另一个常用的内置插件HttpPlugin的应用。 上一章对ConversationSummaryPlugin总结进行了调整之后,顺便给Semantic

基于 Cloudflare Workers 和 cloudflare-docker-proxy 搭建镜像加速服务

本文主要介绍了如何基于 Cloudflare Workers 和 cloudflare-docker-proxy 搭建 dockerhub、gcr、quay 等镜像加速服务。 最近,受限于各种情况,部分主流镜像站都关了,为了能够正常使用,建议自己搭建一个加速器。 写文之前,也已经部署好了一个,可以直

探索Semantic Kernel内置插件:深入了解ConversationSummaryPlugin的应用

前言 经过前几章的学习我们已经熟悉了Semantic Kernel 插件的概念,以及基于Prompts构造的Semantic Plugins和基于本地方法构建的Native Plugins。本章我们来讲解一下在Semantic Kernel 中内置的一些插件,让我们避免重复造轮子。 内置插件 Sem

探索Web Components

这篇文章介绍了Web Components技术,它允许开发者创建可复用、封装良好的自定义HTML元素,并直接在浏览器中运行,无需依赖外部库。通过组合HTML模板、Shadow DOM、自定义元素和HTML imports,Web Components增强了原生DOM的功能,提高了组件化开发的封装性和...