Linux 内存管理 pt.3

linux,内存,管理,pt · 浏览次数 : 222

小编点评

## 内存分配和回收在 Linux 中 内存分配和回收是 Linux 内存管理的核心功能之一,它可以有效提高 Linux 系统的性能。以下是内存分配和回收的关键步骤: 1. **内存分配**: - C 标准库提供的 `malloc()` 函数用于分配内存。 - `malloc()` 函数接收内存大小作为参数,并返回指向内存空间的指针。 - 当 `malloc()` 函数分配完内存后,会调用 `brk()` 或 `mmap()` 来分配实际物理内存。 2. **内存回收**: - `free()` 或 `unmap()` 函数用于释放分配的内存空间。 - `free()` 函数使用 LRU(Least Recently Used)算法,回收最近使用最少的内存页面。 - `unmap()` 函数直接将内存映射对象从进程中移除,并将其返回给内核。 - 对于大小小于 4K 的内存,内核会创建一个缓存并将其分配给进程。 - 当缓存已满时,内核会重新分配一个完整的物理页作为缓存。 3. **伙伴系统**: - 当需要分配小于 4K 的内存时,内核会为之保留一个完整的物理页,并尽量将物理页分割成大小相同的小块。 - 当有多个小块被请求时,内核会合并这些小块,最终分配2、slab分配器slab 分配器是 Linux 内核中的一个重要组成。 4. **LRU算法**: - 针对每个进程,LRU算法会选择最近使用最少的内存页面进行回收。 5. **swap**: - 当进程需要访问不常访问的内存时,内核会通过 swap 机制将这些内存写到磁盘中Swap。 - 当进程访问这些内存时,再从磁盘读取这些数据到内存中。 6. **OOM(Out of Memory)**: - 当内存紧张时,系统会通过 OOM 机制直接杀掉占用大量内存的进程。

正文

哈喽大家好,我是咸鱼

在《Linux 内存管理 pt.2》中我们学习了多级页表和大页,我们知道了由于历史遗留的问题,Linux 的页通常为 4KB

这样就会导致一个页表里面会有特别多页,为了解决这个问题,Linux 提供了两种解决方案——多级页表和大页

那么今天继续我们的 Linux 内存管理学习,我们今天要学习的是——内存的分配和回收

在 Linux 中,内存是如何被分配和回收的呢?

内存分配

在 Linux 中,内存的分配通常由 C 标准库提供的内存分配函数 malloc() 实现

当malloc() 函数需要分配内存时,它会调用这两个系统调用——即 brk() 和 mmap()

  • brk()

对于小块内存(小于 128K大于 4K),使用 brk() 来分配,通过移动堆顶的位置来分配内存

这些内存释放后并不会立刻归还系统,而是被缓存起来,这样就可以重复使用

优缺点:

  1. 减少缺页异常的发生,提高内存访问效率

  2. 由于不会立刻归还释放的内存给系统,所以在内存工作繁忙时,频繁的内存分配和释放会造成内存碎片

  • mmap()

对于大块内存(大于 128K),则直接使用内存映射 mmap() 来分配,也就是在文件映射段找一块空闲内存分配出去,释放时直接归还系统

优缺点:

  1. 在释放时直接归还系统,所以每次 mmap 都会发生缺页异常

  2. 在内存工作繁忙时,频繁的内存分配会导致大量的缺页异常,使内核的管理负担增大。这也是 malloc 只对大块内存使用 mmap 的原因

需要注意的是,一开始调用内存分配函数的时候,其实是没有真正分配到物理内存
只有在进程首次访问时才分配,即通过缺页异常进入内核中,再由内核来分配内存

Linux 伙伴系统(buddy)

在 Linux 中,光知道如何分配内存还不行,还得知道该怎么分配

伙伴管理器是 Linux 系统中一种常见的内存分配算法,它可以让系统在分配物理内存时,快速地找到相应大小的可用内存块

前面说到,MMU 是一种硬件设备,负责虚拟内存和物理内存的映射关系。当内核需要访问某个虚拟内存时,MMU 将该虚拟地址转换为对应的物理内存地址,并通过伙伴系统的分配算法来定位相应的内存块

当内存释放时,伙伴系统将其标记为空闲,用于重新分配给其他进程。因此,伙伴系统和 MMU 相互协作,实现 Linux 操作系统的内存管理功能

上面说到,对于4K 至 128K 的内存用 brk() 来分配,对于大于 128k 的内存使用内存映射 mmap() 来分配。那如果要分配的内存小于 4K 呢?

实际系统运行的时候,有着许多内存小于 4K 的对象,如果为他们分配单独的页,那就太浪费内存了

所以 Linux 通过下面两种方式来分配小于 4K 的内存:

1、伙伴系统

当需要分配小于4K的内存时,内核会为之保留一个完整的物理页,并尽量将物理页分割成大小相同的小块。当有多个小块被请求时,内核会合并这些小块,最终分配

2、slab分配器

slab 分配器是 Linux 内核中的一个重要组成(你可以将slab 看成构建在伙伴系统上的一个缓存)它将一小块内存分配称为缓存(cache)

当需要分配小于 4K 的内存时,Slab 分配器会创建一个小的缓存来保存请求内存的块。每个缓存都有一个物理页的大小

如果已经分配完了所有内存块,Slab 分配器会重新分配一个完整的物理页作为缓存,以供后续请求使用

为了防止内存碎片化,slab 分配器会保留已经使用完的 slab 块并重复使用其中未被使用的空间,而不是将其释放回系统

内存回收

如果内存只分配而不释放,就会造成内存泄漏,甚至会耗尽系统内存

所以,在应用程序用完内存后,还需要调用 free() 或 unmap() ,来释放这些不用的内存

那么系统是如何回收内存的呢?

1、使用 LRU(Least Recently Used)算法,回收最近使用最少的内存页面

2、回收不常访问的内存,把不常用的内存通过交换分区(swap)直接写到磁盘中

Swap 其实就是把一块磁盘空间当成内存来用

它可以把进程暂时不用的数据存储到磁盘中(这个过程称为换出),当进程访问这些内存时,再从磁盘读取这些数据到内存中(这个过程称为换入)

通常只在内存不足时,才会发生 Swap 交换。并且由于磁盘读写的速度远比内存慢,Swap 会导致严重的内存性能问题

3、杀死进程,内存紧张时系统还会通过 OOM(Out of Memory),直接杀掉占用大量内存的进程

OOM(Out of Memory),其实是内核的一种保护机制,使用 oom_score 为每个进程的内存使用情况进行评分

一个进程消耗的内存越大,oom_score 就越大;

一个进程运行占用的 CPU 越多,oom_score 就越小

进程的 oom_score 越大,代表消耗的内存越多,也就越容易被 OOM 杀死

感谢阅读,喜欢作者就动动小手[一键三连],这是我写作最大的动力

与Linux 内存管理 pt.3相似的内容:

Linux 内存管理 pt.3

哈喽大家好,我是咸鱼 在《Linux 内存管理 pt.2》中我们学习了多级页表和大页,我们知道了由于历史遗留的问题,Linux 的页通常为 4KB 这样就会导致一个页表里面会有特别多页,为了解决这个问题,Linux 提供了两种解决方案——多级页表和大页 那么今天继续我们的 Linux 内存管理学习,

Linux 内存管理 pt.1

哈喽大家好,我是咸鱼 今天我们来学习一下 Linux 操作系统核心之一:内存 跟 CPU 一样,内存也是操作系统最核心的功能之一,内存主要用来存储系统和程序的指令、数据、缓存等 关于内存的学习,我会尽量以通俗易懂的方式且分成多篇文章去讲解 那么今天在 pt.1 文章中,我们来学习一下 Linux 中

Linux 内存管理 pt.2

哈喽大家好我是咸鱼,在《Linux 内存管理 pt.1》中我们学习了什么是物理内存、虚拟内存,了解了内存映射、缺页异常等内容 那么今天我们来接着学习 Linux 内存管理中的多级页表和大页 多级页表&大页 在《Linux 内存管理 pt.1》中我们知道了内核为每个进程都维护了一张页表,这张页表用来记

[转帖]Linux内存管理 -- /proc/{pid}/smaps讲解

https://www.jianshu.com/p/8203457a11cc 本文包括如下三部分: 基本介绍与输出介绍 第一行基础信息讲解 详细信息讲解3.1 Size3.2 Rss3.3 Pss、Shared/Private_Clean/Dirty3.4 Referenced3.5 Anonymo

[转帖]服务器体系(SMP, NUMA, MPP)与共享存储器架构(UMA和NUMA)

《Linux内存管理:转换后备缓冲区(TLB)原理》 《内存管理:Linux Memory Management:MMU、段、分页、PAE、Cache、TLB》 《Memory Management Concepts overview(内存管理基本概念)》 《NUMA - Non Uniform M

[转帖]Linux内存管理——大部分人没有掌握的shmall和shmmax参数

https://zhuanlan.zhihu.com/p/551804053 内核中的 shmall 和 shmmax 参数 SHMMAX= 配置了最大的内存segment的大小 >这个设置的比SGA_MAX_SIZE大比较好。 SHMMIN= 最小的内存segment的大小 SHMMNI= 整个系

[转帖]Linux内存泄露案例分析和内存管理分享

https://zhuanlan.zhihu.com/p/583922188 一、问题 近期我们运维同事接到线上LB(负载均衡)服务内存报警,运维同事反馈说LB集群有部分机器的内存使用率超过80%,有的甚至超过90%,而且内存使用率还再不停的增长。接到内存报警的消息,让整个团队都比较紧张,我们团队负

Linux内存泄露案例分析和内存管理分享

作者:李遵举 一、问题 近期我们运维同事接到线上LB(负载均衡)服务内存报警,运维同事反馈说LB集群有部分机器的内存使用率超过80%,有的甚至超过90%,而且内存使用率还再不停的增长。接到内存报警的消息,让整个团队都比较紧张,我们团队负责的LB服务是零售、物流、科技等业务服务的流量入口,承接上万个服

系统内存管理:虚拟内存、内存分段与分页、页表缓存TLB以及Linux内存管理

虚拟内存的主要作用是提供更大的地址空间,使得每个进程都可以拥有大量的虚拟内存,而不受物理内存大小的限制。此外,虚拟内存还可以提供内存保护和共享的机制,保护每个进程的内存空间不被其他进程非法访问,并允许多个进程共享同一份物理内存数据,提高了系统的资源利用率。虚拟内存的实现方式有分段和分页两种,其中分页机制更为常用和灵活。分页机制将虚拟内存划分为固定大小的页,将每个进程的虚拟地址空间映射到物理内存的页

[转帖]Linux内存–PageCache

https://plantegg.github.io/2020/11/15/Linux%E5%86%85%E5%AD%98--pagecache/ 本系列有如下几篇 Linux 内存问题汇总 Linux内存–PageCache Linux内存–管理和碎片 Linux内存–HugePage Linux