它来了!真正的 python 多线程

真正,python,多线程 · 浏览次数 : 262

小编点评

```python # Main interpreter ID: Interpreter(id=0, isolated=None) print(f"Main interpreter ID: {main}") # Sub-interpreter: Interpreter(id=1, isolated=True) print(f"Sub-interpreter: {interp}") # Created Thread: Thread(id=1, name='Created Thread') print(f"Created Thread: {t1}") # First running Thread: Thread(id=2, name='First running Thread') print(f"First running Thread: {t2}") # Second running Thread: Thread(id=2, name='Second running Thread') print(f"Second running Thread: {t2}") # Channel: RecvChannel(id=0, SendChannel(id=0) print(f"Channel: {r}, {s}") # Received: b'spam' print(f"Received: {obj}") # Interpreter(id=7, isolated=None)run_in_thread(code) print(f"Interpreter(id=7, isolated=None)run_in_thread(code)") # Interpreter(id=8, isolated=None)run_in_thread(code) print(f"Interpreter(id=8, isolated=None)run_in_thread(code)") ``` ``` spam Received: b'spam' Interpreter(id=7, isolated=None)run_in_thread(code) Interpreter(id=8, isolated=None)run_in_thread(code) ```

正文

哈喽大家好,我是咸鱼

几天前,IBM 工程师 Martin Heinz 发文表示 python 3.12 版本回引入"Per-Interpreter GIL”,有了这个 Per-Interpreter 全局解释器锁,python 就能实现真正意义上的并行/并发

我们知道,python 的多线程/进程并不是真正意义上的多线程/进程,这是因为 python GIL (Global Interpreter Lock)导致的

而即将发布的 Python 3.12 中引入了名为 "Per-Interpreter GIL" 的新特性,能够实现真正的并发

接下来我们来看下这篇文章,原文链接如下:

https://martinheinz.dev/blog/97

译文

Python 到现在已经 32 岁了,但它到现在还没有实现适当的、真正的并发/并行

由于将在 Python 3.12 (预计 2023 年 10 月发布)中引入 “Per-Interpreter GIL”(全局解释器锁),这种情况将会被改变

虽然距离 python 3.12 的发布还有几个月的时间,但是相关代码已经实现了。所以让我们提前来了解一下如何使用子解释器 API(ub-interpreters API) 来编写出真正的并发Python代码

子解释器(Sub-Interpreters)

我们首先来看下这个 “Per-Interpreter GIL” 是如何解决 Python 缺失适当并发性这个问题的

简单来讲,GIL(全局解释器锁)是一个互斥锁,它只允许一个线程控制 Python 解释器(某个线程想要执行,必须要先拿到 GIL ,在一个 python 解释器里面,GIL 只有一个,拿不到 GIL 的就不允许执行)

这就意味着即使你在 Python 中创建多个线程,也只会有一个线程在运行

随着 “Per-Interpreter GIL” 的引用,单个 python 解释器不再共享同一个 GIL。这种隔离级别允许每个子 python 解释器真正地并发运行

这意味着我们可以通过生成额外的子解释器来绕过 Python 的并发限制,其中每个子解释器都有自己的GIL(拿到一个 GIL 锁)

更详细的说明请参见 PEP 684,该文档描述了此功能/更改:https://peps.python.org/pep-0684/#per-interpreter-state

如何安装

想要使用这个新功能,我们需要安装最新的 python 版本,这需要源码编译安装

# https://devguide.python.org/getting-started/setup-building/#unix-compiling
git clone https://github.com/python/cpython.git
cd cpython

./configure --enable-optimizations --prefix=$(pwd)/python-3.12
make -s -j2
./python
# Python 3.12.0a7+ (heads/main:22f3425c3d, May 10 2023, 12:52:07) [GCC 11.3.0] on linux
# Type "help", "copyright", "credits" or "license" for more information.

C-API 在哪里

现在我们已经安装好了最新版本,那么我们该如何使用子解释器呢?我们可以直接通过 import 来导入吗?不幸的是,还不能

正如 PEP-684 中指出的: ...this is an advanced feature meant for a narrow set of users of the C-API.

Per-Interpreter GIL 的特性目前只能通过 C-API 使用,还没有直接的接口供开发人员使用

接口预计会在 PEP 554中出现,如果大家能够接受,它应该会在 Python 3.13 中出现,在这个版本出现之前,我们必须自己想办法来实现子解释器

虽然还没有相关文档,也没有相关模块可以导入,但 CPython 代码库中有一些代码段向我们展示了如何使用它:

  1. 方法一:我们可以使用 _xxsubinterpreters 模块(因为是通过 C 实现的,所以命名比较奇怪,而且在 python 中不能够简单地去检查代码)
  2. 方法二:可以使用 CPython 的 test 模块,该模块具有用于测试的示例 Interpreter(和 Channel)类
# Choose one of these:
import _xxsubinterpreters as interpreters
from test.support import interpreters

通常情况下我们一般用上面的第二种方法来实现

我们已经找到了子解释器,但我们还需要通过 test 模块去借用一些辅助函数,以便将代码传递给子解释器,辅助函数如下

from textwrap import dedent
import os
# https://github.com/python/cpython/blob/
#   15665d896bae9c3d8b60bd7210ac1b7dc533b093/Lib/test/test__xxsubinterpreters.py#L75
def _captured_script(script):
    r, w = os.pipe()
    indented = script.replace('\n', '\n                ')
    wrapped = dedent(f"""
        import contextlib
        with open({w}, 'w', encoding="utf-8") as spipe:
            with contextlib.redirect_stdout(spipe):
                {indented}
        """)
    return wrapped, open(r, encoding="utf-8")


def _run_output(interp, request, channels=None):
    script, rpipe = _captured_script(request)
    with rpipe:
        interp.run(script, channels=channels)
        return rpipe.read()

interpreters 模块与上面的辅助函数组合在一起,便可以生成第一个子解释器:

from test.support import interpreters

main = interpreters.get_main()
print(f"Main interpreter ID: {main}")
# Main interpreter ID: Interpreter(id=0, isolated=None)

interp = interpreters.create()

print(f"Sub-interpreter: {interp}")
# Sub-interpreter: Interpreter(id=1, isolated=True)

# https://github.com/python/cpython/blob/
#   15665d896bae9c3d8b60bd7210ac1b7dc533b093/Lib/test/test__xxsubinterpreters.py#L236
code = dedent("""
            from test.support import interpreters
            cur = interpreters.get_current()
            print(cur.id)
            """)

out = _run_output(interp, code)

print(f"All Interpreters: {interpreters.list_all()}")
# All Interpreters: [Interpreter(id=0, isolated=None), Interpreter(id=1, isolated=None)]
print(f"Output: {out}")  # Result of 'print(cur.id)'
# Output: 1

生成和运行新解释器的一种方法是使用 create() 函数,然后将解释器与我们想要执行的代码一起传递给 _run_output() 辅助函数

还有一种更简单的方法,如下所示

interp = interpreters.create()
interp.run(code)

直接使用 interpreters 模块的 run 方法。

但如果我们运行上面这两段代码时,会收到以下报错

Fatal Python error: PyInterpreterState_Delete: remaining subinterpreters
Python runtime state: finalizing (tstate=0x000055b5926bf398)

为了避免这个报错,我们还需要清理一些悬挂的解释器:

def cleanup_interpreters():
    for i in interpreters.list_all():
        if i.id == 0:  # main
            continue
        try:
            print(f"Cleaning up interpreter: {i}")
            i.close()
        except RuntimeError:
            pass  # already destroyed

cleanup_interpreters()
# Cleaning up interpreter: Interpreter(id=1, isolated=None)
# Cleaning up interpreter: Interpreter(id=2, isolated=None)

线程

虽然使用上面的辅助函数运行代码是可行的,但在 threading 模块中使用熟悉的接口可能会更方便

import threading

def run_in_thread():
    t = threading.Thread(target=interpreters.create)
    print(t)
    t.start()
    print(t)
    t.join()
    print(t)

run_in_thread()
run_in_thread()

# <Thread(Thread-1 (create), initial)>
# <Thread(Thread-1 (create), started 139772371633728)>
# <Thread(Thread-1 (create), stopped 139772371633728)>
# <Thread(Thread-2 (create), initial)>
# <Thread(Thread-2 (create), started 139772371633728)>
# <Thread(Thread-2 (create), stopped 139772371633728)>

我们通过把 interpreters.create 函数传递给Thread,它会自动在线程内部生成新的子解释器

我们也可以结合这两种方法,并将辅助函数传递给 threading.Thread

import time

def run_in_thread():
    interp = interpreters.create(isolated=True)
    t = threading.Thread(target=_run_output, args=(interp, dedent("""
            import _xxsubinterpreters as _interpreters
            cur = _interpreters.get_current()

            import time
            time.sleep(2)
            # Can't print from here, won't bubble-up to main interpreter

            assert isinstance(cur, _interpreters.InterpreterID)
            """)))
    print(f"Created Thread: {t}")
    t.start()
    return t


t1 = run_in_thread()
print(f"First running Thread: {t1}")
t2 = run_in_thread()
print(f"Second running Thread: {t2}")
time.sleep(4)  # Need to sleep to give Threads time to complete
cleanup_interpreters()

上面的代码中演示了如何使用 _xxsubinterpreters 模块来实现 (方法一)

我们还在每个线程中休眠 2 秒来模拟“工作”状态

请注意,我们甚至不必调用 join() 函数等待线程完成,只需在线程完成时清理解释器即可

Channels

如果我们进一步挖掘 CPython test 模块,我们还会发现 RecvChannel 和 SendChannel 类的实现类似于 Golang 中已知的通道

# https://github.com/python/cpython/blob/
#   15665d896bae9c3d8b60bd7210ac1b7dc533b093/Lib/test/test_interpreters.py#L583
r, s = interpreters.create_channel()

print(f"Channel: {r}, {s}")
# Channel: RecvChannel(id=0), SendChannel(id=0)

orig = b'spam'
s.send_nowait(orig)
obj = r.recv()
print(f"Received: {obj}")
# Received: b'spam'

cleanup_interpreters()
# Need clean up, otherwise:

# free(): invalid pointer
# Aborted (core dumped)

上面的例子介绍了如何创建一个接收端通道(r)和发送端通道(s),然后我们使用 send_nowait 方法将数据发送,通过 recv 方法来接收数据

这个通道实际上只是另一个解释器,和以前一样,我们需要在处理完它之后进行清理

Digging Deeper

如果我们想要修改或者调整子解释器的选项(这些选项通常在 C 代码中设置),我们可以使用

test.support 模块中的代码,具体来说是run_in_subinterp_with_config

import test.support

def run_in_thread(script):
    test.support.run_in_subinterp_with_config(
        script,
        use_main_obmalloc=True,
        allow_fork=True,
        allow_exec=True,
        allow_threads=True,
        allow_daemon_threads=False,
        check_multi_interp_extensions=False,
        own_gil=True,
    )

code = dedent(f"""
            from test.support import interpreters
            cur = interpreters.get_current()
            print(cur)
            """)

run_in_thread(code)
# Interpreter(id=7, isolated=None)
run_in_thread(code)
# Interpreter(id=8, isolated=None)

上面这个run_in_subinterp_with_config函数是 C 函数的 Python API。它提供了一些子解释器选项,如 own_gil,指定子解释器是否应该拥有自己的 GIL

与它来了!真正的 python 多线程相似的内容:

它来了!真正的 python 多线程

哈喽大家好,我是咸鱼 几天前,IBM 工程师 Martin Heinz 发文表示 python 3.12 版本回引入"Per-Interpreter GIL”,有了这个 Per-Interpreter 全局解释器锁,python 就能实现真正意义上的并行/并发 我们知道,python 的多线程/进程

位图(bitmap)原理以及实现

大家好,我是蓝胖子,我一直相信编程是一门实践性的技术,其中算法也不例外,初学者可能往往对它可望而不可及,觉得很难,学了又忘,忘其实是由于没有真正搞懂算法的应用场景,所以我准备出一个系列,囊括我们在日常开发中常用的算法,并结合实际的应用场景,真正的感受算法的魅力。 今天,我们就来学习下位图bitmap

堆的原理以及实现O(lgn)

大家好,我是蓝胖子,我一直相信编程是一门实践性的技术,其中算法也不例外,初学者可能往往对它可望而不可及,觉得很难,学了又忘,忘其实是由于没有真正搞懂算法的应用场景,所以我准备出一个系列,囊括我们在日常开发中常用的算法,并结合实际的应用场景,真正的感受算法的魅力。 今天我们就来看看堆这种数据结构。 源

布隆过滤器原理及实现

大家好,我是蓝胖子,我一直相信编程是一门实践性的技术,其中算法也不例外,初学者可能往往对它可望而不可及,觉得很难,学了又忘,忘其实是由于没有真正搞懂算法的应用场景,所以我准备出一个系列,囊括我们在日常开发中常用的算法,并结合实际的应用场景,真正的感受算法的魅力。 今天,我们就来学习下布隆过滤器的原理

【Jenkins系列】快速创建Jenkins Job

Jenkins Job 类型 1.Freestyle project 这个是jenkins的基础功能,可以用它来执行各种构建任务,他只能构建在一个电脑上,如果没有太多的需求,这个job基本够用了,它包含了所有基础功能. 2.Pipeline 真实的工作环境有很多job,比如先编译,然后执行静态代码检

5.11 汇编语言:仿写IF条件语句

条件语句,也称为IF-ELSE语句,是计算机编程中的一种基本控制结构。它允许程序根据条件的真假来执行不同的代码块。条件语句在处理决策和分支逻辑时非常有用。一般来说,条件语句由IF关键字、一个条件表达式、一个或多个代码块以及可选的ELSE关键字和对应的代码块组成。条件表达式的结果通常是布尔值(True或False),决定了程序将执行IF代码块还是ELSE代码块。在汇编语言中,条件跳转指令用于根据条件

Java开发者的神经网络进阶指南:深入探讨交叉熵损失函数

在本文中,我们深入探讨了交叉熵函数作为一种重要的损失函数,特别适用于神经网络训练中。交叉熵通过衡量真实标签分布与模型预测分布之间的差异,帮助优化模型的性能。我们从信息论的角度解释了交叉熵的概念,它是基于Shannon信息论中的熵而来,用于度量两个概率分布之间的差异。

PHP 程序员转 Go 语言的经历分享

大家好,我是码农先森。 之前有朋友让我分享从 PHP 转 Go 的经历,这次它来了。我主要从模仿、进阶、应用这三个方面来描述转 Go 的经历及心得。模仿是良好的开端,进阶是艰难的成长,应用是认知的提升。希望我的经历对大家能有所启发。 模仿 著名艺术家毕加索说过「模仿是人类一切学习的开端,然后才是创新

一键自动化博客发布工具,用过的人都说好(公众号篇)

之前收到很多朋友的要求,说是需要一个公众号的自动发布工具。 现在,它来了。 前提条件 前提条件当然是先下载 blog-auto-publishing-tools这个博客自动发布工具,地址如下:https://github.com/ddean2009/blog-auto-publishing-tool

如何使用 LinkedHashMap 实现 LRU 缓存?

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 大家好,我是小彭。 在上一篇文章里,我们聊到了 HashMap 的实现原理和源码分析,在源码分析的过程中,我们发现一些 LinkedHashMap 相关的源码,当时没有展开,现在它来了。 那么,LinkedH