Pandas 加载数据的方法和技巧

pandas,加载,数据,方法,技巧 · 浏览次数 : 196

小编点评

**pandas 导入数据的方法和技巧** **1. pandas.read_csv() 方法** * `pandas.read_csv()` 方法可以读取 CSV 文件。 * 它支持多种参数,可以自定义读取的选项。 * 例如,可以使用 `sep` 参数指定分隔符,`header` 参数指定第一行是列名。 **2. pandas.read_html() 方法** * `pandas.read_html()` 方法可以读取 HTML 文件,并将其转换为 DataFrame。 * 它支持多种参数,可以自定义解析选项。 * 例如,可以使用 `header` 参数指定第一行是列名。 **3. pandas.json_normalize() 方法** * `pandas.json_normalize()` 方法可以将 JSON 数据转换为 DataFrame。 * 它支持多种参数,可以指定处理嵌套列表和字典的选项。 **4. 导入 JSON 数据** * 可以使用 `pandas.read_json()` 或 `pandas.read_excel()` 方法读取 JSON 数据。 * 这些方法支持自动识别 JSON 数据格式。 **5. 读取更复杂的 JSON 数据** * 如果 JSON 数据嵌套了列表和字典,可以使用 `pandas.json_normalize()` 方法进行处理。 * 例如,可以将 JSON 数据分成多个 DataFrame,并使用 `join()` 方法将它们合并起来。 **6. 使用 pandas 的 read_clipboard() 方法** * `pandas.read_clipboard()` 方法可以读取剪贴板上的任何数据。 * 默认情况下,它使用正则表达式 `\s+` 来作为分隔符。 **示例** ```python import pandas as pd # 读取 CSV 文件 df = pd.read_csv("data.csv") # 读取 HTML 文件 df_tables = pd.read_html("table.html") # 读取 JSON 数据 df = pd.read_json("data.json") # 使用 pandas.json_normalize() 方法处理 JSON 数据 df = pd.json_normalize(df) ```

正文

哈喽大家好,我是咸鱼

相信小伙伴们在学习 python 数据分析的过程中或多或少都会听说或者使用过 pandas

pandas 是 python 的一个拓展库,常用于数据分析

今天咸鱼将介绍几个关于 pandas 导入数据的方法和技巧

从 URL 获取 csv 数据

关于 pandas 导入 csv 数据,使用的是下面这个方法

pandas.read_csv()

但是这个方法可以通过 HTTP 从 URL 来获取 CSV 数据

关于通过 HTTP 从 URL 来获取 CSV 数据,我在之前的文章《为什么访问同一个网址却返回不同的内容》有介绍过

例如下面的例子将展示如何通过 URL 获取 csv 文件
image

url = 'https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/sklearn/datasets/data/boston_house_prices.csv'

df = pandas.read_csv(url)

通过 URL 来获取 CSV 数据,可以省去了需要先将 CSV 文件保存在本地这一步骤

从网站获取 HTML table 数据

pandas.read_html() 用于获取 HTML 文件中的 table 数据(即<table>标签的表格数据)

我们看下面的例子

import pandas as pd

url = 'http://weather.sina.com.cn/china/shanghaishi/'
df_tables = pd.read_html(url)
print(df_tables)

image
通过 pandas.read_html() 可以实现简易爬虫

JSON 数据格式化

有时候我们在处理 JSON 数据的时候,会发现 JSON 数据通常都是嵌套好多层

如果我们想要将 JSON 数据转换成表格数据,使其扁平化,我们可以用下面的方法来实现

pandas.json_normalize()

看下面的例子

impor pandas as pd

data =[
    {
      "id": "A001",
      "name": "咸鱼运维杂谈",
      "url": "https://www.cnblogs.com/edisonfish/",
      "likes": 61
    },
    {
      "id": "A002",
      "name": "Google",
      "url": "www.google.com",
      "likes": 124
    },
    {
      "id": "A003",
      "name": "淘宝",
      "url": "www.taobao.com",
      "likes": 45
    }
  ]

df = pd.json_normalize(data)
print(df)

结果如下

     id    name      url                                    likes
0  A001  咸鱼运维杂谈  https://www.cnblogs.com/edisonfish/    61
1  A002  Google      www.google.com                         124
2  A003   淘宝        www.taobao.com                         45

接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典

import pandas as pd

data ={
    "school_name": "local primary school",
    "class": "Year 1",
    "info": {
      "president": "John Kasich",
      "address": "ABC road, London, UK",
      "contacts": {
        "email": "admin@e.com",
        "tel": "123456789"
      }
    },
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}


# 展平数据
df = pd.json_normalize(
    data,
    record_path =['students'],
    meta=[
        'class',
        ['info', 'president'],
        ['info', 'contacts', 'tel']
    ]
)
print(df)

结果如下

     id   name  math  ...   class  info.president info.contacts.tel
0  A001    Tom    60  ...  Year 1     John Kasich         123456789
1  A002  James    89  ...  Year 1     John Kasich         123456789
2  A003  Jenny    79  ...  Year 1     John Kasich         123456789

[3 rows x 8 columns]

从剪贴板获取数据

pandas 的 read_clipboard() 方法可以获取存储在剪贴板上的任何数据

假设你将数据从网上要复制粘贴到本地,那么用 pandas 的 read_clipboard() 方法可以直接读取剪贴板的内容

默认情况下采取正则表达式\s+ 作为分隔值的分隔符(即匹配一个或多个空格、制表符、换行符等空白字符作为分隔符),然后将剪贴板上的数据分割成表格数据

import pandas as pd

df = pd.read_clipboard()

print(df)

参考文章:https://jrashford.com/2022/08/02/loading-data-into-pandas-5-tips-and-tricks-you-may-or-may-not-know/

与Pandas 加载数据的方法和技巧相似的内容:

Pandas 加载数据的方法和技巧

哈喽大家好,我是咸鱼 相信小伙伴们在学习 python 数据分析的过程中或多或少都会听说或者使用过 pandas pandas 是 python 的一个拓展库,常用于数据分析 今天咸鱼将介绍几个关于 pandas 导入数据的方法和技巧 ## 从 URL 获取 csv 数据 关于 pandas 导入

【pandas基础】--数据读取

数据读取是第一步,只有成功加载数据之后,后续的操作才有可能。 pandas可以读取和导入各种数据格式的数据,如CSV,Excel,JSON,SQL,HTML等,不需要手动编写复杂的读取代码。 1. 各类数据源 pandas提供了导入各类常用文件格式数据的接口,这里介绍3种最常用的加载数据的接口。 1

Pandas 使用教程 Series、DataFrame

[TOC] Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算) Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。 Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工

算法金 | 来了,pandas 2.0

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 210+/10000,内含 Pandas 是一个强大的数据分析库,广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构和数据分析工具,使得处理和分析数据变得更加简单

pandas模块

为什么要学习pandas? numpy已经可以帮助我们进行数据的处理了,那么学习pandas的目的是什么呢? numpy能够帮助我们处理的是数值型的数据,当然在数据分析中除了数值型的数据还有好多其他类型的数据(字符串,时间序列),那么pandas就可以帮我们很好的处理除了数值型的其他数据! 什么是p

pandas:时间序列数据的周期转换

时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为例,演示如何使用pandas来进行周期转换。 1. 创建测试数据 首先创建测试数据,下面创建一天的K

最近常用的几个【行操作】的Pandas函数

theme: smartblue 最近在做交易数据的统计分析时,多次用到数据行之间的一些操作,对于其中的细节,简单做了个笔记。 1. shfit函数 shift函数在策略回测代码中经常出现,计算交易信号,持仓信号以及资金曲线时都有涉及。这个函数的主要作用是将某列的值上下移动。默认情况下,shift函

pandas -- 处理非数值型数据 -- 数据分析三剑客(核心)

博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 为什么学习pandas numpy已

pandas(进阶操作)-- 政治献金项目数据分析

博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 import numpy as np

【pandas小技巧】--日期相关处理

日期处理相关内容之前`pandas基础`系列中有一篇专门介绍过,本篇补充两个常用的技巧。 # 1. 多列合并为日期 当收集来的数据中,年月日等信息分散在多个列时,往往需要先合并成日期类型,然后才能做分析处理。合并多列转换为日期类型,可以直接用 `to_datetime`函数来处理: ```pytho