一次SQL调优 聊一聊 SQLSERVER 数据页

一次,sql,sqlserver,数据 · 浏览次数 : 2395

小编点评

**总结** **减少请求在数据页上的流转** * 通过使用 SQL Server 的 Query Optimization器,优化查询计划。 * 通过使用缓存技术,减少查询结果在数据页上的流转。 * 通过使用索引技术,提高数据页的命中率。 **减少逻辑读** * 通过使用 SQL Server 的 Query Optimization器,优化查询计划。 * 通过使用索引技术,提高数据页的命中率。 * 通过使用缓存技术,减少查询结果在数据页上的流转。 **提升 sql 的查询性能** * 通过使用 SQL Server 的 Query Optimization器,优化查询计划。 * 通过使用索引技术,提高数据页的命中率。 * 通过使用缓存技术,减少查询结果在数据页上的流转。 * 通过使用 SQL Server 的 Query Execution Plan cache,减少查询执行计划中的流转。 **其他** * SQL Server 的 Query Execution Plan cache,可以减少查询执行计划中的流转。 * SQL Server 的 Query Optimization器,可以优化查询计划。 * SQL Server 的索引技术,可以提高数据页的命中率。 * SQL Server 的缓存技术,可以减少查询结果在数据页上的流转。

正文

一:背景

1.讲故事

最近给一位朋友做 SQL 慢语句 优化,花了些时间调优,遗憾的是 SQLSERVER 非源码公开,玩起来不是那么顺利,不过从这次经历中我觉得明年的一个重大任务就是好好研究一下它,争取在 SQLSERVER 性能优化上做一些成绩,哈哈! 个人觉得要想深入研究 SQLSERVER,得从它的存储引擎说起,说到存储引擎又得从核心的 数据页 说起,毕竟 mdf 就是由 数据页 拼出来的,当然理解的不对大家可以指出来。

二:理解数据页

1. 什么是数据页

一般来说,对大块资源或者数据进行高效管理都会按照一定粒度来划分的,比如说 Windows 对内存的管理就是按照 内存页 (4k) 来进行划分,言外之意就是 SQLSERVER 对 mdf 的管理也是按照 数据页 (8k) 来划分的,画个图大概就是这样的。

那如何来验证这个结论呢?刚才也说了数据都在数据页上,我们弄点数据然后在指定的数据页上提取出来就好了,这里用的是 SQLServer 2019


CREATE DATABASE MyTestDB
GO
USE MyTestDB;
GO
IF OBJECT_ID('person') IS NOT NULL
    DROP TABLE person;
CREATE TABLE person
(
    id INT IDENTITY,
    name CHAR(5)
);
GO
INSERT INTO dbo.person( name ) VALUES ('john');
INSERT INTO dbo.person( name ) VALUES ('mary');

2. 寻找数据所在的数据页

刚才图中也说了 mdf 是由无数个 数据页 拼出来的,那如何找到 person 表所在的数据页呢?其实微软提供了一个 dbcc ind 命令可以帮我们洞察出来,同时记得开始 3604 标记,让输出显示在控制台上,而不是默认的错误日志中,这个命令具体怎么用,大家可以查看官方文档。


DBCC TRACEON(3604)
DBCC IND(MyTestDB,person, -1)

从输出看有两条记录,第一个是 PagePID=41 是 IAM 数据页,而PagePID=280 就是我们 person 表记录所在的数据页编号,也就是说 person 表的记录在 mdf 文件偏移为 0n280 * 0n8192 的位置,用 WinDbg 算一下就是 0x00230000


0:090> ? 0n280 * 0n8192
Evaluate expression: 2293760 = 00000000`00230000

那是不是呢?可以用 WinHex 验证一下,为了不出现进程占用,先把 MyTestDB 下线了,最后记得再上线即可。


ALTER DATABASE MyTestDB SET OFFLINE

ALTER DATABASE MyTestDB SET ONLINE

从 WinHex 上看,果然是在偏移为 0x00230000 这个数据页上。

3. 如何从内存中看到数据页

刚才我们看到的数据页只是物理硬盘上的,但数据页和数据页之间的逻辑关系肯定是在内存中用一定的数据结构来承载的,接下来看下这个 数据页 映射到 SQLSERVER 进程内存的哪里呢?微软提供了 DBCC PAGE 命令可以查看指定 数据页 的详细信息。


DBCC TRACEON(3604)
DBCC PAGE(MyTestDB,1,280,2)

输出结果如下:


DBCC 执行完毕。如果 DBCC 输出了错误信息,请与系统管理员联系。

PAGE: (1:280)


BUFFER:


BUF @0x000002B41104F480

bpage = 0x000002B3F0632000          bPmmpage = 0x0000000000000000       bsort_r_nextbP = 0x000002B41104F3D0
bsort_r_prevbP = 0x0000000000000000 bhash = 0x0000000000000000          bpageno = (1:280)
bpart = 1                           ckptGen = 0x0000000000000000        bDirtyRefCount = 0
bstat = 0x9                         breferences = 0                     berrcode = 0
bUse1 = 12454                       bstat2 = 0x0                        blog = 0x15ab215a
bsampleCount = 0                    bIoCount = 0                        resPoolId = 0
bcputicks = 0                       bReadMicroSec = 182                 bDirtyContext = 0x0000000000000000
bDbPageBroker = 0x0000000000000000  bdbid = 10                          bpru = 0x000002B3FA708040

PAGE HEADER:


Page @0x000002B3F0632000

m_pageId = (1:280)                  m_headerVersion = 1                 m_type = 1
m_typeFlagBits = 0x0                m_level = 0                         m_flagBits = 0x8200
m_objId (AllocUnitId.idObj) = 179   m_indexId (AllocUnitId.idInd) = 256 
Metadata: AllocUnitId = 72057594049658880                                
Metadata: PartitionId = 72057594043170816                                Metadata: IndexId = 0
Metadata: ObjectId = 581577110      m_prevPage = (0:0)                  m_nextPage = (0:0)
pminlen = 13                        m_slotCnt = 2                       m_freeCnt = 8060
m_freeData = 128                    m_reservedCnt = 0                   m_lsn = (37:584:3)
m_xactReserved = 0                  m_xdesId = (0:0)                    m_ghostRecCnt = 0
m_tornBits = -116446693             DB Frag ID = 1                      

Allocation Status

GAM (1:2) = ALLOCATED               SGAM (1:3) = NOT ALLOCATED          PFS (1:1) = 0x41 ALLOCATED  50_PCT_FULL
DIFF (1:6) = CHANGED                ML (1:7) = NOT MIN_LOGGED           

DATA:


Memory Dump @0x000000F840DF8000

000000F840DF8000:   01010000 00820001 00000000 00000d00 00000000  ....................
000000F840DF8014:   00000200 b3000000 7c1f8000 18010000 01000000  ........|...........
000000F840DF8028:   25000000 48020000 03000000 00000000 00000000  %...H...............
000000F840DF803C:   1b2a0ff9 00000000 00000000 00000000 00000000  .*..................
000000F840DF8050:   00000000 00000000 00000000 00000000 10000d00  ....................
000000F840DF8064:   01000000 6a6f686e 20020000 10000d00 02000000  ....john ...........
000000F840DF8078:   6d617279 20020000 00002121 21212121 21212121  mary .....!!!!!!!!!!
000000F840DF808C:   21212121 21212121 21212121 21212121 21212121  !!!!!!!!!!!!!!!!!!!!
000000F840DF80A0:   21212121 21212121 21212121 21212121 21212121  !!!!!!!!!!!!!!!!!!!!
...
000000F840DF9FF4:   21212121 21212121 70006000                    !!!!!!!!p.`.

OFFSET TABLE:

Row - Offset                        
1 (0x1) - 112 (0x70)                
0 (0x0) - 96 (0x60)                 


DBCC 执行完毕。如果 DBCC 输出了错误信息,请与系统管理员联系。

Completion time: 2022-12-30T17:48:20.5466040+08:00

从上面的 Memory Dump 区节中可以看到,数据在进程内存的 000000F840DF8064 ~ 000000F840DF8078 范围内,这里要吐槽的是内存地址按照 大端布局 的,看起来很不习惯,可以用 windbg 用 小端布局 来显示。


0:116> dp 000000F840DF8064
000000f8`40df8064  6e686f6a`00000001 000d0010`00000220
000000f8`40df8074  7972616d`00000002 21210000`00000220
000000f8`40df8084  21212121`21212121 21212121`21212121
000000f8`40df8094  21212121`21212121 21212121`21212121
000000f8`40df80a4  21212121`21212121 21212121`21212121
000000f8`40df80b4  21212121`21212121 21212121`21212121
000000f8`40df80c4  21212121`21212121 21212121`21212121
000000f8`40df80d4  21212121`21212121 21212121`21212121

4. sql 请求源码研究

喜欢玩 windbg 的朋友肯定想对 sqlserver 进行汇编级洞察,比如研究下 sql 请求在 sqlserver 里面的执行流是什么样的? 其实很简单,我们可以这样处理,使用 ba 对 john 的内存地址下一个硬件断点,即 ba r4 000000f840df8064+0x4 ,然后在 SSMS 上执行一条 SELECT * FROM person 语句,因为要提取 john 自然就会命中。


0:104> ba r4 000000f840df8064+0x4 
0:104> g
Breakpoint 0 hit
sqlmin!BTreeMgr::GetHPageIdWithKey+0x4a:
00007ff8`d4ea121a 48894c2478      mov     qword ptr [rsp+78h],rcx ss:000000f8`45278028=0000024800000025
0:102> k
 # Child-SP          RetAddr               Call Site
00 000000f8`45277fb0 00007ff8`d4ea0b59     sqlmin!BTreeMgr::GetHPageIdWithKey+0x4a
01 000000f8`45278450 00007ff8`d4ea08b7     sqlmin!IndexPageManager::GetPageWithKey+0x119
02 000000f8`45278d20 00007ff8`d4eb22d1     sqlmin!GetRowForKeyValue+0x203
03 000000f8`45279880 00007ff8`d4eb2a39     sqlmin!IndexDataSetSession::GetRowByKeyValue+0x141
04 000000f8`45279a70 00007ff8`d4eb279b     sqlmin!IndexDataSetSession::FetchRowByKeyValueInternal+0x230
05 000000f8`45279ed0 00007ff8`d4eb2883     sqlmin!RowsetNewSS::FetchRowByKeyValueInternal+0x437
06 000000f8`4527a000 00007ff8`d4eaadab     sqlmin!RowsetNewSS::FetchRowByKeyValue+0x96
07 000000f8`4527a050 00007ff8`d4f93d60     sqlmin!CMEDScan::StartSearch+0x4f8
08 000000f8`4527a170 00007ff8`d4f93f3a     sqlmin!CMEDCatYukonObject::GetTemporalCurrentTableId+0x10e
09 000000f8`4527a380 00007ff8`d801f0d1     sqlmin!CMEDProxyRelation::GetTemporalCurrentTableId+0x7a
0a 000000f8`4527a3c0 00007ff8`d801dfb8     sqllang!CAlgTableMetadata::FPartialBind+0xb58
0b 000000f8`4527a580 00007ff8`d80394b3     sqllang!CAlgTableMetadata::Bind+0x317
0c 000000f8`4527a620 00007ff8`d800415d     sqllang!CRelOp_Get::BindTree+0x78f
0d 000000f8`4527a890 00007ff8`d80418a1     sqllang!COptExpr::BindTree+0x85
0e 000000f8`4527a8c0 00007ff8`d800415d     sqllang!CRelOp_FromList::BindTree+0x31
0f 000000f8`4527a920 00007ff8`d802c2a3     sqllang!COptExpr::BindTree+0x85
10 000000f8`4527a950 00007ff8`d800415d     sqllang!CRelOp_QuerySpec::BindTree+0x2e8
11 000000f8`4527aa60 00007ff8`d80042dd     sqllang!COptExpr::BindTree+0x85
12 000000f8`4527aa90 00007ff8`d800415d     sqllang!CRelOp_SelectQuery::BindTree+0x489
13 000000f8`4527ab80 00007ff8`d8003f23     sqllang!COptExpr::BindTree+0x85
14 000000f8`4527abb0 00007ff8`d8004e47     sqllang!CRelOp_Query::FAlgebrizeQuery+0x4bd
15 000000f8`4527ae30 00007ff8`d7ff5576     sqllang!CProchdr::FNormQuery+0x8f
16 000000f8`4527ae70 00007ff8`d7ff4a79     sqllang!CProchdr::FNormalizeStep+0x5bd
17 000000f8`4527b4b0 00007ff8`d7ff5124     sqllang!CSQLSource::FCompile+0xea5
18 000000f8`4527e1b0 00007ff8`d7e659c3     sqllang!CSQLSource::FCompWrapper+0xcb
19 000000f8`4527e280 00007ff8`d7e6387a     sqllang!CSQLSource::Transform+0x721
1a 000000f8`4527e3e0 00007ff8`d7e6e67b     sqllang!CSQLSource::Execute+0x4fa
1b 000000f8`4527e8c0 00007ff8`d7e6d815     sqllang!process_request+0xca6
1c 000000f8`4527efc0 00007ff8`d7e6d5ef     sqllang!process_commands_internal+0x4b7
1d 000000f8`4527f0f0 00007ff8`d4096523     sqllang!process_messages+0x1d6
1e 000000f8`4527f2d0 00007ff8`d4096e6d     sqldk!SOS_Task::Param::Execute+0x232
1f 000000f8`4527f8d0 00007ff8`d4096c75     sqldk!SOS_Scheduler::RunTask+0xa5
20 000000f8`4527f940 00007ff8`d40bb160     sqldk!SOS_Scheduler::ProcessTasks+0x39d
21 000000f8`4527fa60 00007ff8`d40baa5b     sqldk!SchedulerManager::WorkerEntryPoint+0x2a1
22 000000f8`4527fb30 00007ff8`d40bafa4     sqldk!SystemThreadDispatcher::ProcessWorker+0x3ed
23 000000f8`4527fe30 00007ff8`f6d86fd4     sqldk!SchedulerManager::ThreadEntryPoint+0x3b5
24 000000f8`4527ff20 00007ff8`f865cec1     KERNEL32!BaseThreadInitThunk+0x14
25 000000f8`4527ff50 00000000`00000000     ntdll!RtlUserThreadStart+0x21

从线程栈上看,有 SQLSERVER 核心的 Scheduler ,Task 以及 命令分析器,查询优化器,查询执行器 等各种核心元素,后续再慢慢研究吧。

三: 总结

深入的理解数据,索引在数据页上的布局,可以从根本上帮助我们理解如何减少请求在数据页上的流转,减少逻辑读,从而提升 sql 的查询性能。

与一次SQL调优 聊一聊 SQLSERVER 数据页相似的内容:

一次SQL调优 聊一聊 SQLSERVER 数据页

一:背景 1.讲故事 最近给一位朋友做 SQL 慢语句 优化,花了些时间调优,遗憾的是 SQLSERVER 非源码公开,玩起来不是那么顺利,不过从这次经历中我觉得明年的一个重大任务就是好好研究一下它,争取在 SQLSERVER 性能优化上做一些成绩,哈哈! 个人觉得要想深入研究 SQLSERVER,

Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南

在Tez上优化Hive查询无法采用一刀切的方法。查询性能取决于数据的大小、文件类型、查询设计和查询模式。在性能测试过程中,应评估和验证配置参数及任何SQL修改。建议在工作负载的性能测试过程中一次只进行一项更改,并最好在开发环境中评估调优更改的影响,然后再在生产环境中使用。

TiDB与MySQL的SQL差异及执行计划简析

TiDB作为NewSQL,其在对MySQL(SQL92协议)的兼容上做了很多,MySQL作为当下使用较广的事务型数据库,在IT界尤其是互联网间使用广泛,那么对于开发人员来说,1)两个数据库产品在SQL开发及调优的过程中,都有哪些差异?在系统迁移前需要提前做哪些准备? 2)TiDB的执行计划如何查看,如何SQL调优? 本文做了一个简要归纳,欢迎查阅交流。

性能分析: 快速定位SQL问题

在数据库性能调优的实践中,SQL性能分析是至关重要的一环。一个执行效率低下的SQL语句可能会导致整个系统的性能瓶颈。 为了快速定位并解决这些问题,我们需要对SQL进行性能分析。本文将介绍一些常用的方法和技术,帮助大家快速定位SQL问题。 1、找出执行时间最长的SQL 首先,我们需要找到执行时间最长的

[转帖]TiDB调优小结

https://www.jianshu.com/p/d5ee4dca66d8 TiDB概览 先来一段官网的描述 TiDB server:无状态SQL解析层,支持二级索引,在线ddl,兼容MySQL协议,数据转储SQL输入->解析语法树(AST)->逻辑计划分析->执行计划优化->cost-base

《软件性能测试分析与调优实践之路》第二版-手稿节选-Mysql数据库性能定位与分析

在做MySQL数据的性能定位前,需要先知道MySQL查询时数据库内部的执行过程。只有弄清SQL的执行过程,才能对执行过程中的每一步的性能做定位分析。如图6-2-1所示。 图6-2-1 从图中可以看到,当查询出数据以后,会将数据先返回给执行器,此时执行器先将结果写到查询缓存里面,这样在下次查询相同的数

【Azure 存储服务】Azure Storage Account 下的 Table 查询的性能调优

问题描述 Azure Storage Account 下的 Table 查询的性能调优? 问题解答 因为Azure Storage Table服务(表服务) 与常规的关系型数据库不一样(例如:MySQL, SQL Server等),他里面存储的实体(Entity,表示一条数据)不能通过添加索引来优化

[转帖]【建议收藏】15755 字,讲透 MySQL 性能优化(包含 MySQL 架构、存储引擎、调优工具、SQL、索引、建议等等)

https://my.oschina.net/jiagoushi/blog/5593246 0. 目录 1)MySQL 总体架构介绍 2)MySQL 存储引擎调优 3)常用慢查询分析工具 4)如何定位不合理的 SQL 5)SQL 优化的一些建议 1 MySQL 总体架构介绍 1.1 MySQL 总体

[转帖]88. sys_kwr

88. sys_kwr ¶ 88.1. 插件sys_kwr简介 ¶ 插件sys_kwr是KingbaseES 的一个扩展插件。主要功能是通过周期性自动记录性能统计相关的快照,分析出KingbaseES的操作系统运行环境、数据库时间组成、等待事件和TOP SQL等性能指标,为数据库性能调优提供指导。

SQL Thinking

s2下半年我在内部有一次部门级别的技术分享会,以本文内容分享为主。 其实有很多人问过我相同的问题,遇到需要改写的慢sql,不知道怎么改,改好了以后也不知道等不等价?不等价了也不知道错在哪?这个要怎么破? 其实都是因为绝大多数人没有做过开发,看不懂sql,不会写sql,没有sql思维,下面通过几个案例