为什么 Python 代码在函数中运行得更快?

函数,代码,更快 · 浏览次数 : 114

小编点评

**Python 代码在函数中运行得更快的原因是:** 1. **局部变量存储在数组中**,而全局变量则存储在字典中。在函数中,局部变量可以被直接访问,而全局变量则需要通过字典间接访问。由于数组的效率更高,局部变量的访问速度比全局变量更快。 2. **Python 解释器使用 C 编写的虚拟机**,而 CPython 有其他类型的虚拟机,例如 PyPy 和 IronPython。由于 CPython 的虚拟机使用 C 编写的版本,因此执行速度可能比 Python 的虚拟机快。 3. **Python 内置函数和库**通常比 Python 自动的函数和库更快。例如,NumPy 和 Pandas 是用 C 或 C++ 实现的,比 Python 自动的函数和库更快。 4. **Python 的解释器**可以根据代码的运行上下文选择最佳的执行方法,而 Python 的函数运行在全局范围内,可能导致性能下降。 5. **函数调用**也会增加一些开销,即使是在函数中运行。因此,即使函数在函数中运行得更快,但函数调用仍然是性能下降的因素。

正文

哈喽大家好,我是咸鱼

当谈到编程效率和性能优化时,Python 常常被调侃为“慢如蜗牛”

有趣的是,Python 代码在函数中运行往往比在全局范围内运行要快得多

小伙伴们可能会有这个疑问:为什么在函数中运行的 Python 代码速度更快?

今天这篇文章将会解答大家心中的疑惑

原文链接:https://stackabuse.com/why-does-python-code-run-faster-in-a-function/

译文

要理解为什么 Python 代码在函数中运行得更快,我们需要首先了解 Python 是如何执行代码的

我们知道,python 是一种解释型语言,它会逐行读取并执行代码

当运行一个 python 程序的时候,首先将代码编译成字节码(一种更接近机器码的中间语言)然后 python 解释器执行字节码

def hello_world():
    print("Hello, World!")

import dis
dis.dis(hello_world)
#结果
  2           0 LOAD_GLOBAL              0 (print)
              2 LOAD_CONST               1 ('Hello, World!')
              4 CALL_FUNCTION            1
              6 POP_TOP
              8 LOAD_CONST               0 (None)
             10 RETURN_VALUE

由上所示,python 中的 dis 模块将函数 hello_world 分解为字节码

需要注意的是,python 解释器是一个执行字节码的虚拟机,默认的 python 解释器是用 C 编写的,即 CPython

还有其他的 python 解释器如 Jython(用 Java 编写),IronPython(用于 .net)和PyPy(用 Python 和 C 编写)

为什么 Python 代码在函数中运行得更快

我们来编写一个简单的例子:定义一个函数 my_function,函数内部包含一个 for 循环

def my_function():
    for i in range(100000000):
        pass

编译该函数的时候,字节码可能如下所示

  SETUP_LOOP              20 (to 23)
  LOAD_GLOBAL             0 (range)
  LOAD_CONST              3 (100000000)
  CALL_FUNCTION           1
  GET_ITER            
  FOR_ITER                6 (to 22)
  STORE_FAST              0 (i)
  JUMP_ABSOLUTE           13
  POP_BLOCK           
  LOAD_CONST              0 (None)
  RETURN_VALUE

这里的关键指令是 STORE_FAST ,用于存储循环变量 i

现在我们把这个 for 循环放在 python 脚本的顶层(全局范围内),然后再来看一下字节码

for i in range(100000000):
	pass
  SETUP_LOOP              20 (to 23)
  LOAD_NAME               0 (range)
  LOAD_CONST              3 (100000000)
  CALL_FUNCTION           1
  GET_ITER            
  FOR_ITER                6 (to 22)
  STORE_NAME              1 (i)
  JUMP_ABSOLUTE           13
  POP_BLOCK           
  LOAD_CONST              2 (None)
  RETURN_VALUE

可以看到关键指令变成了 STORE_NAME,而不是 STORE_FAST

字节码 STORE_FASTSTORE_NAME 快,因为在函数中,局部变量存储在固定长度的数组中,而不是存储在字典中。这个数组可以通过索引直接访问,使得变量检索非常快

基本上,它只是一个指向列表的指针,并增加了 PyObject 的引用计数,这两个都是高效的操作

另一方面,全局变量存储在一个字典。当访问全局变量时,Python 必须执行哈希表查找,这涉及计算哈希值,然后检索与之关联的值

虽然经过优化,但仍然比基于索引的查找慢

基准测试验证

我们知道在 Python 中,代码执行的速度取决于代码执行的位置——在函数中还是在全局作用域中

让我们用一个简单的基准测试的例子来比较一下

首先定义一个求阶乘的函数

def factorial(n):
    result = 1
    for i in range(1, n + 1):
        result *= i
    return result

然后在全局范围内执行相同的代码

n = 20
result = 1
for i in range(1, n + 1):
    result *= i

为了对这两段代码进行基准测试,我们可以在 Python 中使用 timeit 模块,它提供了一种简单的方法来对少量 Python 代码进行计时

import timeit

# 函数
def benchmark():
    start = timeit.default_timer()

    factorial(20)

    end = timeit.default_timer()
    print(end - start)

benchmark()
# Prints: 3.541994374245405e-06

# 全局范围
start = timeit.default_timer()

n = 20
result = 1
for i in range(1, n + 1):
    result *= i

end = timeit.default_timer()
print(end - start) 
# Pirnts: 5.375011824071407e-06

可以看到,函数代码的执行速度比全局作用域代码要快

需要注意的是,这两段代码最好不要放在同一脚本中,要分开单独运行

这是因为 benchmark() 函数在执行时间上增加了一些开销,并且全局代码在内部进行了优化

cProfile 分析

python 提供了一个 cProfile 内置模块

让我们用它来分析一个新例子:在局部和全局范围内计算平方和

import cProfile

def sum_of_squares():
    total = 0
    for i in range(1, 10000000):
        total += i * i

i = None
total = 0
def sum_of_squares_g():
    global i
    global total
    for i in range(1, 10000000):
        total += i * i
    
def profile(func):
    pr = cProfile.Profile()
    pr.enable()

    func()

    pr.disable()
    pr.print_stats()
#
# Profile function code
#
print("Function scope:")
profile(sum_of_squares)

#
# Profile global scope code
#
print("Global scope:")
profile(sum_of_squares_g)

上面的例子中,可以认为sum_of_squares_g() 函数是全局的,因为它使用了两个全局变量, itotal

从性能分析结果中,可以看到函数代码在执行时间方面比全局更有效

Function scope:
         2 function calls in 0.903 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
   1       0.903    0.903    0.903    0.903 profiler.py:3(sum_of_squares)
   1       0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}


Global scope:
         2 function calls in 1.358 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
   1       1.358    1.358    1.358    1.358 profiler.py:10(sum_of_squares_g)
   1       0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

如何优化 python 函数的性能

前面我们知道,Python 代码在函数中运行往往比在全局范围内运行要快得多

如果想要进一步提高 python 函数代码效率,不妨考虑一下使用局部变量而不是全局变量

另一种方法是尽可能使用内置函数和库。Python 的内置函数是用 C 实现的,比 Python 快得多

比如 NumPy 和 Pandas,也是用 C 或 C++ 实现的,它们比实现同样功能的 Python 代码速度更快

又比如同样是实现数字求和的功能,python 内置的 sum 函数要比你自己编写函数速度更快

与为什么 Python 代码在函数中运行得更快?相似的内容:

为什么 Python 代码在函数中运行得更快?

哈喽大家好,我是咸鱼 当谈到编程效率和性能优化时,Python 常常被调侃为“慢如蜗牛” 有趣的是,Python 代码在函数中运行往往比在全局范围内运行要快得多 小伙伴们可能会有这个疑问:为什么在函数中运行的 Python 代码速度更快? 今天这篇文章将会解答大家心中的疑惑 原文链接:https:/

跟女朋友介绍十个常用的 Python 内置函数,她夸了我一整天

内置函数是什么 了解内置函数之前,先来了解一下什么是函数 将使用频繁的代码段进行封装,并给它起一个名字,当我们使用的时候只需要知道名字就行 函数就是一段封装好的、可以重复使用的代码,函数使得我们的程序更加简洁、模块化,提高了代码的复用性 举个例子 我想实现一个求球表面积功能的程序,当我们知道半径 r

【Azure Developer】如何通过Azure Portal快速获取到对应操作的API并转换为Python代码

问题描述 对于Azure资源进行配置操作,门户上可以正常操作。但是想通过Python代码实现,这样可以批量处理。那么在没有SDK的情况下,是否有快速办法呢? 问题解答 当然可以,Azure Portal上操作的所有资源都是通过REST API来实现的,所以只要找到正确的API,就可以通过浏览器中抓取

推荐几款火爆的Python在线编辑器

在当今数字化时代,编程已成为一项不可或缺的技能。Python作为一种简单易学且功能强大的编程语言,受到了广大编程爱好者和专业开发人员的青睐。为了方便大家随时随地编写和运行Python代码,市面上涌现了许多优秀的在线Python编辑器。本文将为您推荐几款目前非常火爆的Python在线编辑器。 1. J

Python colorama 设置控制台、命令行输出彩色文字

为了方便调试代码,经常会向stdout中输出一些日志,但是大量日志,有时不好定位问题。 使用终端打印特定颜色字符串,可以突出显示关键性的信息,帮助用户更好地识别和理解输出内容。 https://pypi.org/project/colorama/ Colorama 是为了在命令行界面中提供简单、方便

Python Django 零基础从零到一部署服务,Hello Django!全文件夹目录和核心代码!

**在这篇文章中,我将手把手地教你如何从零开始部署一个使用Django框架的Python服务。无论你是一个刚开始接触开发的新手,还是一个有经验的开发者想要快速了解Django,这篇教程都会为你提供一条清晰的路径。我们将从环境搭建开始,一步一步地创建一个可以处理GET和POST请求的服务,让你能在实践

《最新出炉》系列初窥篇-Python+Playwright自动化测试-4-playwright等待浅析

1.简介 在介绍selenium的时候,宏哥也介绍过等待,是因为在某些元素出现后,才可以进行操作。有时候我们自己忘记添加等待时间后,查了半天代码确定就是没有问题,奇怪的就是获取不到元素。然后搞了好久,或者经过别人的提示才恍然大悟没有添加等待时间。而playwright为了避免我们犯这么low的错误,

推荐一款Python接口自动化测试数据提取分析神器!

1、引言 在处理JSON数据时,我们常常需要提取、筛选或者变换数据。手动编写这些操作的代码不仅繁琐,而且容易出错。Python作为一个功能强大的编程语言,拥有丰富的库和工具来处理这些数据。今天,将介绍一个实用的Python库——JMESPath,它为提取JSON数据提供了简洁而强大的语法。 2、JM

数据分析---matplotlib模块的使用

1.摘要 在数据可视化、统计绘图和图表生成领域,Python 被广泛使用,其中 Matplotlib 是一个极其重要的基础三方库。本博客旨在介绍 Python 及其三方库 Matplotlib 的详细信息,包括 Matplotlib 的安装步骤、示例代码及使用注意事项。 2.引言 2.1 什么是Ma

如何使用ChatGPT来自动化Python任务

1.概述 最近,比较火热的ChatGPT很受欢迎。今天,笔者为大家来介绍一下ChatGPT能做哪些事情。 2.内容 ChatGPT是一款由OpenAI开发的专门从事对话的AI聊天机器人。它的目标是让AI系统更加自然的与之交互,但它也可以在我们编写代码的时候提供一些帮助。 2.1 使用ChatGPT来