【pandas基础】--数据检索

pandas,基础,数据检索 · 浏览次数 : 126

小编点评

**pandas 数据检索功能** pandas 数据检索功能是其最基础也是最重要的功能之一。它提供了多种方法来选择、过滤和转换数据,使其更方便地进行数据分析。 **常用数据过滤方式** 1. **行列过滤**:使用 loc 或 iloc 函数选择行或列数据。 ```python # 行间过滤 df.loc[1:5, :] # 列间过滤 df.loc[:, "年份": "指标中文"] ``` 2. **条件过滤**:通过索引或列名过滤数据。 ```python # 单条件 df[df["年份"] > 2020] # 多条件 df[(df["年份"] > 2020) & (df["指标中文"]].str.contains("乡村")] ``` 3. **函数过滤**:通过函数应用自定义逻辑过滤数据。 ```python # 自定义函数增加一列 df["value10倍"] = df["value"].apply(lambda x: x*10) # 自定义函数设置指标中文缩写 df["指标缩写"] = df["指标中文"].map({ "年末总人口": "总人口", "乡村人口": "乡村" }) ``` **其他方法** 1. **apply 方法**:适用于针对 DataFrame某一列的数据进行操作。 ```python df["value10倍"] = df["value"].apply(lambda x: x*10) ``` 2. **map 方法**:适用于针对 DataFrame某一列的数据进行操作。 ```python df["指标缩写"] = df["指标中文"].map({ "年末总人口": "总人口", "乡村人口": "乡村" }) ``` **总结** pandas 数据检索提供了多种方法,可以根据实际需求选择合适的过滤方式进行数据处理。通过数据过滤,可以快速确定用于分析的数据范围,剥离无用的数据,提高分析的效率。

正文

pandas的数据检索功能是其最基础也是最重要的功能之一。

pandas中最常用的几种数据过滤方式如下:

  1. 行列过滤:选取指定的行或者列
  2. 条件过滤:对列的数据设置过滤条件
  3. 函数过滤:通过函数设置更加复杂的过滤条件

本篇所有示例所使用的测试数据如下:

import pandas as pd
import numpy as np

fp = "http://databook.top:8888/pandas/cn-people.csv"
df = pd.read_csv(fp)
df

image.png

1. 行列过滤

pandas中最常用的按行或者按列选择数据的函数是 lociloc

1.1 loc 函数

loc函数通过标签索引选择行列数据,可以在一个语句中同时指定行和列的条件。
按范围选取行:

df.loc([1:5, :])

image.png

选取指定的行:

df.loc[[1, 5], :]

image.png

按范围选取列:

df.loc[:, "年份":"指标中文"]

image.png

选取指定的列:

df.loc[:, ["年份","指标中文"]]

image.png

行和列也可以同时设置:

df.loc[1:3, ["年份","指标中文"]]

image.png

1.2 iloc 函数

iloc函数通过整数位置索引选择行列数据。
这种方法与loc方法类似,但是它使用整数位置而不是标签。

按范围选择行:

df.iloc([1:5, :])

image.png
注意这里可以看出ilocloc的区别,同样的范围[1:5]
iloc不包括index=5的数据,而loc包括index=5的数据。

选择指定的行:

df.iloc[[1, 5], :]

image.png
这种选择方式下,ilocloc函数返回的结果是一样的。

按范围选择列:

df.iloc[:, 0:3]

image.png
注意,这里是 ilocloc的另一个区别,
iloc只能用数字序列来表示列的范围(第一列对应数字0),
回顾之前的loc函数,我们可以用列名来表示范围的df.loc[:, "年份":"指标中文"]

另外,iloc表示列的范围0:3表示是0,1,2三列,不包括3这一列。

选择指定的列:

df.iloc[:, [0, 2]]

image.png

loc一样,iloc也可以行和列同时设置:

df.iloc[1:5, [0, 2]]

image.png

2. 条件过滤

行列过滤的方式是基于索引和列名称来过滤的,除此之外,还可以根据列的值来过滤。
这也是分析时常用的过滤方式。

2.1 单条件

根据列的值来过滤,列的值是数值还是字符串都可以。

df[df["年份"] > 2020]

image.png

字符串的过滤方式:

df[df["指标中文"].str.contains("乡村")].head()

image.png

2.2 多条件

除了设置单独的条件之外,也支持通过逻辑符号&|来设置多个条件。

df[(df["年份"] > 2020) & (df["指标中文"].str.contains("乡村"))]

image.png
必须同时满足年份>2021指标中文包含乡村两个条件的数据,只有1条。

df[(df["年份"] > 2020) | (df["指标中文"].str.contains("乡村"))].head(6)

image.png
只要满足年份>2021指标中文包含乡村两个条件之一的数据。

3. 函数过滤

pandas中还有两种通过函数来过滤和转换数据的方式,这种方式可以将自定义的函数应用到数据之上。
这样就提供了相当灵活的数据操作方式。

3.1 apply

针对DataFrame某一列数据的apply
比如下面的示例增加一列,其值是将value列的数据放大10倍:

df["value10倍"] = df["value"].apply(lambda x: x*10)
df

image.png

3.2 map

针对DataFrame某一列数据的map
比如下面的示例增加一列,其值是设置指标中文的缩写。

df["指标缩写"] = df["指标中文"].map({"年末总人口": "总人口", "乡村人口": "乡村"})
df

image.png

4. 总结回顾

本篇主要介绍了pandas数据检索的常用方式,数据检索是做分析时最常用的步骤。
通过数据过滤方法,快速确定用于分析的数据范围,剥离无用的数据,提高分析的效率。

数据检索方式由易到难分别为:

  1. 行列过滤,lociloc
  2. 条件过滤,单条件和多条件过滤
  3. 函数过滤,自定义函数灵活的调整已有列的数据

本文关联的微信视频号短视频:
pandas03-数据检索.png

与【pandas基础】--数据检索相似的内容:

【pandas基础】--数据检索

pandas的数据检索功能是其最基础也是最重要的功能之一。 pandas中最常用的几种数据过滤方式如下: 行列过滤:选取指定的行或者列 条件过滤:对列的数据设置过滤条件 函数过滤:通过函数设置更加复杂的过滤条件 本篇所有示例所使用的测试数据如下: import pandas as pd import

【pandas基础】--数据读取

数据读取是第一步,只有成功加载数据之后,后续的操作才有可能。 pandas可以读取和导入各种数据格式的数据,如CSV,Excel,JSON,SQL,HTML等,不需要手动编写复杂的读取代码。 1. 各类数据源 pandas提供了导入各类常用文件格式数据的接口,这里介绍3种最常用的加载数据的接口。 1

【pandas基础】--数据整理

pandas进行数据整理的意义在于,它是数据分析、数据科学和机器学习的前置步骤。 通过数据整理可以提前了解数据的概要,缺失值、重复值等情况,为后续的分析和建模提供更为可靠的数据基础。 本篇主要介绍利用pandas进行数据整理的各种方法。 1. 数据概要 获取数据概要信息可以帮助我们了解数据的基本情况

【pandas基础】--数据修改

pandas 作为一种常用的数据分析工具,提供了广泛的数据修改方法。 既可以针对行或者列的数据进行修改,也可以对具体单个元素进行修改,还可以基于条件选择要修改的行或者列的数据。 1. 增加数据 1.1 增加行数据 pandas的DataFrame增加一行或者多行数据之前是使用append方法。 im

【pandas基础】--数据拆分与合并

数据集拆分是将一个大型的数据集拆分为多个较小的数据集,可以让数据更加清晰易懂,也方便对单个数据集进行分析和处理。 同时,分开的数据集也可以分别应用不同的数据分析方法进行处理,更加高效和专业。 数据集合并则是将多个数据集合并成一个大的数据集,可以提供更全面的信息,也可以进行更综合的数据分析。 同时,数

【pandas基础】--数据排序

`pandas`的数据排序可以帮助我们更好地理解和分析数据。 通过对数据进行排序,我们可以提取出特定的信息,例如最大值、最小值、中位数、众数等等,从而更准确地识别数据的特征和特点。 此外,数据排序还可以帮助我们更好地进行数据可视化,例如绘制直方图、箱线图等等,进一步帮助我们对数据进行解读和分析。 总

【pandas基础】--数据类型

数据类型是计算机编程中将不同类型的数据值分类和定义的方式。 通过数据类型,可以确定数据的存储方式和内存占用量,了解不同类型的数据进行各种运算的能力。 使用`pandas`进行数据分析时,最常用到的几种类型是: 1. 字符串类型,各类文本内容都是字符串类型 2. 数值类型,包括整数和浮点数,可用于计算

【pandas基础】--数据统计

在进行统计分析时,`pandas`提供了多种工具来帮助我们理解数据。 `pandas`提供了多个聚合函数,其中包括均值、标准差、最大值、最小值等等。 此外,`pandas`还可以进行基于列的统计分析,例如通过`groupby()`函数对数据进行聚合,并计算每组的统计分析结果。 除了基本的统计分析之外

【pandas基础】--核心数据结构

pandas中用来承载数据的两个最重要的结构分别是: Series:相当于增强版的一维数组 DataFrame:相当于增强版的二维数组 pandas最大的优势在于处理表格类数据,如果数据维度超过二维,一般我们会使用另一个 python的库 numpy。 本篇主要介绍这两种核心数据结构的创建方式。 1

【pandas基础】--日期处理

时间序列数据是数据分析中一类常见且重要的数据。 它们按照时间顺序记录,通常是从某些现象的观察中收集的,比如经济指标、气象数据、股票价格、销售数据等等。 时间序列数据的特点是有规律地随着时间变化而变化,它们的变化趋势可以被分析和预测。时间序列分析是一种用于预测未来值或评估过去值的统计方法,常常被用于预