【numpy基础】--数组简介

numpy,基础,数组,简介 · 浏览次数 : 103

小编点评

**NumPy数组简介** NumPy 是一个用于高效处理多维数组和矩阵计算的 Python 库。它是科学计算领域中使用最广泛的一个库。 **数组数据类型** NumPy数组是一种多维数组对象,可以存储相同类型的元素。数组支持以下数据类型: * 整数类型(int) * 浮点数类型(float) *字符串类型(str) * 布尔类型(bool) **创建数组** NumPy 提供以下方法创建数组: * `zeros()`:创建一个包含指定数字的数组。 * `ones()`:创建一个包含指定数字的数组。 * `linspace()`:创建一个包含指定分隔值的数组。 * `random()`:创建一个包含随机数字的数组。 * `eye()`:创建一个单位矩阵。 **示例** ```python import numpy as np # 创建包含 10 个整数的数组 arr = np.arange(10) # 打印数组数据类型 print(type(arr)) # # 打印数组内容 print(arr) # 创建包含 5 个浮点数的数组 arr = np.random.rand(5) # 打印数组内容 print(arr) ``` **其他重要概念** * **轴:**数组可以有多个轴,分别表示不同维度。 * **维数:**数组的维数表示数组的所有轴的长度。 * **元素:**每个元素都是一个单独的数字。 * **数组类型:**NumPy 提供多种数据类型的选择,以满足不同的需求。 * **数组操作:**NumPy 提供多种方法可用于操作数组,例如加法、乘法、比较等。

正文

NumPy(Numerical Python)是一个Python库,主要用于高效地处理多维数组和矩阵计算。它是科学计算领域中使用最广泛的一个库。

NumPy中,数组是最核心的概念,用于存储和操作数据。
NumPy数组是一种多维数组对象,可以存储相同类型的元素,它支持高效的数学运算和线性代数操作。

1. 数据类型

numpy 数组要求其中的元素必须是同一个类型的,虽然丧失了一些灵活性,却带来的性能的极大提升。
numpy的数组中如果有字符串,那么所有的值都变成字符型了。
再进行数学运算时会报错,如下所示

import numpy as np

arr = np.array([1, "abc", 3.1])
arr + 1

#错误信息
UFuncTypeError: ufunc 'add' did not contain a loop with signature matching types ...

numpy的标准数据类型主要是各类数值类型,毕竟这个库主要就是用来做数值运算的。
numpy支持如整数(int8、int16、int32、int64)、浮点数(float32、float64)、复数(complex64、complex128)等类型。
此外,numpy还支持一些特殊类型,如布尔型(bool)、无类型(void)等。

具体请参考文档:https://numpy.org/doc/stable/user/basics.types.html

选择数据类型时,注意考虑数据类型的内存占用和计算效率,以选择最优的数据类型。

2. 维,秩和轴

numpy数组的维度,秩和轴这三个概念经常用到。
其中维度是同样的,维度是编程中常用说法,轴是线性代数中常用说法。

numpy维度的信息通过shape属性获取,比如:

import numpy as np

arr = np.array([[[1, 2, 3], [1, 2, 3]]])

arr.shape

#结果:
(1, 2, 3)

这个数组有3个维度(轴),但是每个维度(轴)方向的长度不一样,分别是1,2,3

是指轴的个数,也就是维度的数量,比如上面的数组,就是3
numpy中秩的信息都过ndim属性来获取,比如:

arr.ndim

#结果:
3

3. 创建方式

学习numpy的数组,最重要的目的就是掌握如何运用numpy的数组来进行数值计算。

学习numpy数组的各类运算操作之前,掌握numpy提供的各种数组创建方法必不可少。
numpy提供了多种数组创建方式,每种方式都有其优点和意义。
根据实际需求选择合适的创建方式可以方便地创建具有特定形状和大小的数组,并为其分配内存空间,方便后续高效的学习各种数学运算和线性代数操作。

3.1. zeros

zeors方法可以创建指定维度类型的数组,数组的每个元素都是0

一维,类型分别为intfloat的数组。

import numpy as np

np.zeros(5, dtype=int)
#>>> array([0, 0, 0, 0, 0])

np.zeros(5, dtype=float)
#>>> array([0., 0., 0., 0., 0.])

不同维度的数组。

import numpy as np

np.zeros((3,3), dtype=float)
#>>> 
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])

np.zeros((2,4), dtype=float)
#>>>
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.]])

3.2. ones

ones方法可以创建指定维度类型的数组,数组的每个元素都是1

一维,类型分别为intfloat的数组。

import numpy as np

np.ones(5, dtype=int)
#>>> array([1, 1, 1, 1, 1])

np.ones(5, dtype=float)
#>>> array([1., 1., 1., 1., 1.])

不同维度的数组。

import numpy as np

np.ones((3,3), dtype=float)
#>>>
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])

np.ones((2,4), dtype=float)
#>>>
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.]])

3.3. linspace

linspace函数用来构建均匀分布的数组。

比如,创建一个均匀分布在0~1之间的5个值的数组。

import numpy as np

np.linspace(0, 1, 5)
#>>> array([0.  , 0.25, 0.5 , 0.75, 1.  ])

linspace函数有个endpoint属性,用来控制是否包含最后一个元素。
下面看看这个属性设置之后的区别:

import numpy as np

np.linspace(0, 1, 5, endpoint=False)
#>>> array([0. , 0.2, 0.4, 0.6, 0.8])

#其结果相当于不加endpoint属性时,
#平均分割成6份后取前5份
np.linspace(0, 1, 6)
#>>> array([0. , 0.2, 0.4, 0.6, 0.8, 1. ])

3.4. random

random函数是随机生成numpy数组,也是使用最多的函数。

随机生成值在0~1之间的数组,可以指定任意维度:

import numpy as np

np.random.random((3, 3))
#>>>
array([[0.53058991, 0.72007309, 0.44017494],
       [0.83616085, 0.65746936, 0.56416387],
       [0.56300549, 0.63187035, 0.87307415]])


随机生成值在 0~100 之间整数的数组,可以指定任意维度,
随机值的范围通过第一个和第二个参数指定。

import numpy as np

np.random.randint(0, 100, (3, 3))
#>>>
array([[24, 55, 62],
       [79, 86,  3],
       [14,  7, 63]])

随机生成一个均值0标准差1 的符合正态分布的数组,可以指定任意维度,
均值和标准差通过第一个和第二个参数指定。

np.random.normal(0, 1, (4, 3))
#>>>
array([[ 1.65321113,  1.19167512, -0.13037245],
       [ 1.16451259, -0.58080834,  0.34491977],
       [-0.77054092, -0.95344105, -0.12393142],
       [-0.05896611, -1.25108846, -1.21772507]])

3.5. eye

eye函数是用来创建单位矩阵的。

如果只有一个参数,创建的就是方阵。

np.eye(4)
#>>>
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])

如果创建行列不一样的矩阵,那么,行和列哪个轴短,就以哪个为准生成方阵,其他值都是0

np.eye(2, 4)
#>>>
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.]])

np.eye(4, 2)
#>>>
array([[1., 0.],
       [0., 1.],
       [0., 0.],
       [0., 0.]])

4. 总结回顾

本篇介绍了numpy中最重要的概念--数组的相关知识。

包括数组的数据类型,主要是各种数值类型,
以及各类常用的创建方式(zeros,ones,linspace,random,eye)。

这些虽然简单,却是后续学习各种数组操作的基础。

与【numpy基础】--数组简介相似的内容:

【numpy基础】--数组简介

`NumPy`(Numerical Python)是一个`Python`库,主要用于高效地处理多维数组和矩阵计算。它是科学计算领域中使用最广泛的一个库。 在`NumPy`中,**数组**是最核心的概念,用于存储和操作数据。 `NumPy`数组是一种多维数组对象,可以存储相同类型的元素,它支持高效的数

【numpy基础】--通用计算

`numpy`提供了简单灵活的接口,用于优化数据数组的计算。 通用计算最大的优势在于通过向量化操作,将循环推送至`numpy`之下的编译层,从而取得更快的执行效率。 `numpy`的通用计算让我们计算数组时就像计算单独一个变量一样, 不用写循环去遍历数组中的各个元素。 比如,对于一般的`python

【pandas基础】--概述

Pandas是一个开源的Python数据分析库。 它提供了快速,灵活和富有表现力的数据结构,旨在使数据清洗和分析变得简单而快速。 Pandas是基于NumPy数组构建的,因此它在许多NumPy函数上提供了直接的支持。它还提供了用于对表格数据进行操作的数据结构,例如Series和DataFrame。

【numpy基础】--数组过滤

在`numpy`中,数组可以看作是一系列数值的有序集合,可以通过下标访问其中的元素。处理数组的过程中,经常需要用到数组过滤功能。 过滤功能可以在处理数据时非常有用,因为它可以使数据更加干净和可读性更强。例如,在进行数据分析时,通常需要去除异常值,过滤掉不必要的元素可以使数据更加易于分析和处理。 `n

【numpy基础】--数组索引

数组索引是指在`numpy`数组中引用特定元素的方法。`numpy`的数组索引又称为`fancy indexing`,比其他编程语言的索引强大很多。 # 1. 选取数据 numpy的索引除了像其他语言一样选择一个元素,还可以间隔着选取多个元素,也可以用任意的顺序选取元素。 比如一维数组: ```py

【numpy基础】--数组排序

`numpy` 数组通常是用于数值计算的多维数组,而排序功能可以快速、准确地对数据进行排序,从而得到更加清晰、易于分析的结果。 在数据分析和处理过程中,常常需要对数据进行排序,以便更好地理解和发现其中的规律和趋势。 排序会应用在很多场景中,比如: 1. 数据分类:将数据按照一定的特征进行分类,可以通

【numpy基础】--结构化

目前为止,介绍的`numpy`数组基本都是关于数值的,其实,`numpy`本身就是一个用于数值计算的基础库。 不过,除了数值计算之外,`numpy`也能够支持**结构化数组**。 # 1. 关联不同类型数据 `numpy`的数组为了提高计算性能,要求数组的数据类型要一致。但是现实情况下,我们经常遇到

【numpy基础】--广播计算

`numpy`的广播计算是指在多维数组上进行的一种高效计算方式。 它可以将计算任务分配到每个维度上,并且可以在计算过程中进行数据共享和同步,从而提高计算效率和精度。 广播计算在数值计算、科学计算、机器学习等领域都有广泛的应用。 例如,在数值计算中,广播计算可以用于求解大规模的非线性方程组;在科学计算

学会使用 NumPy:基础、随机、ufunc 和练习测试

NumPy NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。 基本 随机 ufunc 通过测验测试学习 检验您对 NumPy 的掌握程度。 通过练习学习 NumPy 练习 练习: 请插入创建 NumPy 数组的正确方法。 arr = np. ([1,

【numpy基础】--基础操作

`numpy`作为一个强大的数值计算库,提供了对多维数组的很多便捷操作。 承接上一篇数组的创建,本篇主要介绍一些数组的基本操作。 # 1. 子数组 首先介绍获取子数组的方法,提取已有数据的一部分来参与计算是比较常用的功能。 对于一维数组,提取子数组:`arr[start:stop:step]` 1.