【numpy基础】--数组过滤

numpy,基础,数组,过滤 · 浏览次数 : 83

小编点评

** numpy 中的数组过滤** **1. 比较** * **比较比较:**通过比较才能确定过滤的条件。 * **方法 1:**通过元素之间比较,如果满足条件则为True。 * **方法 2:**通过元素之间比较,如果满足条件则为False。 * **数组和单个数字比较**: * **方法 1:**通过元素之间比较,如果满足条件则为True。 * **方法 2:**通过元素之间比较,如果满足条件则为False。 * **广播原则:**如果数组大小相同,元素之间进行比较。 **2. 掩码** * 掩码是指通过比较结果构建的掩码,用于过滤数组中的元素。 * 通过掩码,选择出符合条件的元素。 **3. 过滤过滤** * 根据掩码,选择出符合条件的元素。 * 单条件过滤:使用 & 和 & 连接不同条件。 * 多条件过滤:使用 & 和 | 连接多个条件。 **4. 总结** * numpy 中的数组过滤主要通过比较、掩码和过滤操作实现。 * 通过比较,我们通过元素之间的关系确定元素是否符合过滤条件。 * 通过掩码,我们构建一个只包含符合条件的元素的掩码。 * 通过过滤,我们根据掩码选择出符合条件的元素。

正文

numpy中,数组可以看作是一系列数值的有序集合,可以通过下标访问其中的元素。
处理数组的过程中,经常需要用到数组过滤功能。

过滤功能可以在处理数据时非常有用,因为它可以使数据更加干净和可读性更强。
例如,在进行数据分析时,通常需要去除异常值,过滤掉不必要的元素可以使数据更加易于分析和处理。

numpy本身提供了很多针对特定要求的过滤函数,
不过本篇只介绍最基本的过滤方式,通过最基本的过滤方式来揭示其过滤的原理。

1. 比较

比较是过滤的前提,因为通过比较才能确定过滤的条件。

1.1. 数组和单个数字

import numpy as np

arr = np.random.randint(0, 10, (3, 3))
print(arr)
#运行结果
[[4 1 4]
 [7 6 1]
 [8 9 5]]

print(arr > 5)
#运行结果
[[False False False]
 [ True  True False]
 [ True  True False]]

数组和单个数字比较,也满足上一篇介绍的广播原则,也就是数组arr的每个元素都和数字5进行了比较。

比较的结果是和arr相同结构的数组,数组中的元素是bool值。
满足比较条件是True不满足比较条件的是False

1.2. 数组和数组

除了和单个数字比较之外,数组之间也是可以比较的。

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[9 7 3]
 [2 8 5]
 [2 2 3]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[1 6 0]
 [0 1 8]
 [9 0 5]]

print(arr1 > arr2)
#运行结果
[[ True  True  True]
 [ True  True False]
 [False  True False]]

数组之间的比较就是相同位置的元素之间比较,如果两个数组的结构不一样,会按照上一篇介绍的广播计算方式来扩充数组。
比如:

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[9 6 0]
 [1 4 9]
 [1 1 4]]

arr2 = np.random.randint(0, 10, (3, 1))
print(arr2)
#运行结果
[[1]
 [0]
 [9]]

print(arr1 > arr2)
#运行结果
[[ True  True False]
 [ True  True  True]
 [False False False]]

上面的数组arr2,按广播规则被扩充成:

[[1 1 1]
[0 0 0]
[9 9 9]]

2. 掩码

所谓掩码,其实就是上面的各个示例中的比较结果。
也就是只包含bool值的数组,比如:

[[ True True False]
[ True True True]
[False False False]]

我们就是根据这个掩码,来过滤出数组中的True 或者 False 位置的元素。

3. 过滤

过滤就是根据掩码,选择出符合条件的元素。

3.1. 单条件过滤

arr = np.random.randint(0, 10, (3, 3))
print(arr)
#运行结果
[[8 4 0]
 [2 2 9]
 [9 5 9]]

print(arr[arr > 5])
#运行结果
[8 9 9 9]

最后得到的是arr中值大于5的元素数组。
其中 arr > 5 的结果就是上一节提到的掩码,最后过滤出的元素就是根据这个掩码得到的。

除了跟单独的数字比较,也可以和数组比较:

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[3 4 7]
 [4 6 2]
 [7 2 1]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[2 3 1]
 [7 7 7]
 [1 6 4]]

print(arr1[arr1 > arr2])
#运行结果
[3 4 7 7]

3.2. 多条件过滤

多条件过滤使用 &| 来连接不同的条件。

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[1 0 5]
 [7 4 9]
 [8 5 4]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[6 4 1]
 [0 1 1]
 [8 5 8]]

print(arr1[(arr1 > 5) & (arr1 > arr2)])
#运行结果
[7 9]

过滤arr1大于5** 并且 **对应位置比arr2大的元素。

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[1 0 5]
 [7 4 9]
 [8 5 4]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[6 4 1]
 [0 1 1]
 [8 5 8]]

print(arr1[(arr1 > 5) | (arr1 > arr2)])
#运行结果
[5 7 4 9 8]

过滤arr1大于5** 或者 **对应位置比arr2大的元素。

4. 总结回顾

本篇主要介绍了过滤的基本原理,首先从比较开始,比较的结果是掩码,最后通过掩码过滤数组。

与【numpy基础】--数组过滤相似的内容:

【numpy基础】--数组过滤

在`numpy`中,数组可以看作是一系列数值的有序集合,可以通过下标访问其中的元素。处理数组的过程中,经常需要用到数组过滤功能。 过滤功能可以在处理数据时非常有用,因为它可以使数据更加干净和可读性更强。例如,在进行数据分析时,通常需要去除异常值,过滤掉不必要的元素可以使数据更加易于分析和处理。 `n

【numpy基础】--广播计算

`numpy`的广播计算是指在多维数组上进行的一种高效计算方式。 它可以将计算任务分配到每个维度上,并且可以在计算过程中进行数据共享和同步,从而提高计算效率和精度。 广播计算在数值计算、科学计算、机器学习等领域都有广泛的应用。 例如,在数值计算中,广播计算可以用于求解大规模的非线性方程组;在科学计算

【numpy基础】--数组简介

`NumPy`(Numerical Python)是一个`Python`库,主要用于高效地处理多维数组和矩阵计算。它是科学计算领域中使用最广泛的一个库。 在`NumPy`中,**数组**是最核心的概念,用于存储和操作数据。 `NumPy`数组是一种多维数组对象,可以存储相同类型的元素,它支持高效的数

【numpy基础】--数组索引

数组索引是指在`numpy`数组中引用特定元素的方法。`numpy`的数组索引又称为`fancy indexing`,比其他编程语言的索引强大很多。 # 1. 选取数据 numpy的索引除了像其他语言一样选择一个元素,还可以间隔着选取多个元素,也可以用任意的顺序选取元素。 比如一维数组: ```py

【numpy基础】--数组排序

`numpy` 数组通常是用于数值计算的多维数组,而排序功能可以快速、准确地对数据进行排序,从而得到更加清晰、易于分析的结果。 在数据分析和处理过程中,常常需要对数据进行排序,以便更好地理解和发现其中的规律和趋势。 排序会应用在很多场景中,比如: 1. 数据分类:将数据按照一定的特征进行分类,可以通

【numpy基础】--结构化

目前为止,介绍的`numpy`数组基本都是关于数值的,其实,`numpy`本身就是一个用于数值计算的基础库。 不过,除了数值计算之外,`numpy`也能够支持**结构化数组**。 # 1. 关联不同类型数据 `numpy`的数组为了提高计算性能,要求数组的数据类型要一致。但是现实情况下,我们经常遇到

学会使用 NumPy:基础、随机、ufunc 和练习测试

NumPy NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。 基本 随机 ufunc 通过测验测试学习 检验您对 NumPy 的掌握程度。 通过练习学习 NumPy 练习 练习: 请插入创建 NumPy 数组的正确方法。 arr = np. ([1,

【numpy基础】--基础操作

`numpy`作为一个强大的数值计算库,提供了对多维数组的很多便捷操作。 承接上一篇数组的创建,本篇主要介绍一些数组的基本操作。 # 1. 子数组 首先介绍获取子数组的方法,提取已有数据的一部分来参与计算是比较常用的功能。 对于一维数组,提取子数组:`arr[start:stop:step]` 1.

【numpy基础】--通用计算

`numpy`提供了简单灵活的接口,用于优化数据数组的计算。 通用计算最大的优势在于通过向量化操作,将循环推送至`numpy`之下的编译层,从而取得更快的执行效率。 `numpy`的通用计算让我们计算数组时就像计算单独一个变量一样, 不用写循环去遍历数组中的各个元素。 比如,对于一般的`python

【numpy基础】--聚合计算

上一篇介绍的**通用计算**是关于多个`numpy`数组的计算, 本篇介绍的**聚合计算**一般是针对单个数据集的各种统计结果,同样,使用**聚合函数**,也可以避免繁琐的循环语句的编写。 # 元素的和 数组中的元素求和也就是合计值。 ## 调用方式 **聚合计算**有两种调用方式,一种是面向对象的